Abomasal infusion of oleic acid increases fatty acid digestibility and plasma insulin of lactating dairy cows. 2021

C M Prom, and J M Dos Santos Neto, and J R Newbold, and A L Lock
Department of Animal Science, Michigan State University, East Lansing 48824.

Our objective was to determine whether abomasal infusions of increasing doses of oleic acid (cis-9 C18:1; OA) improved fatty acid (FA) digestibility and milk production of lactating dairy cows. Eight rumen-cannulated multiparous Holstein cows (138 d in milk ± 52) were randomly assigned to treatment sequence in a replicated 4 × 4 Latin square design with 18-d periods consisting of 7 d of washout and 11 d of infusion. Production and digestibility data were collected during the last 4 d of each infusion period. Treatments were 0, 20, 40, or 60 g/d of OA. We dissolved OA in ethanol before infusions. The infusate solution was divided into 4 equal infusions per day, occurring every 6 h, delivering the daily cis-9 C18:1 for each treatment. Animals received the same diet throughout the study, which contained (percent diet dry matter) 28% neutral detergent fiber, 17% crude protein, 27% starch, and 3.3% FA (including 1.8% FA from a saturated FA supplement containing 32% C16:0 and 52% C18:0). Infusion of OA did not affect intake or digestibility of dry matter and neutral detergent fiber. Increasing OA from 0 to 60 g/d linearly increased the digestibility of total FA (8.40 percentage units), 16-carbon FA (8.30 percentage units), and 18-carbon FA (8.60 percentage units). Therefore, increasing OA linearly increased absorbed total FA (162 g/d), 16-carbon FA (26.0 g/d), and 18-carbon FA (127 g/d). Increasing OA linearly increased milk yield (4.30 kg/d), milk fat yield (0.10 kg/d), milk lactose yield (0.22 kg/d), 3.5% fat-corrected milk (3.90 kg/d), and energy-corrected milk (3.70 kg/d) and tended to increase milk protein yield. Increasing OA did not affect the yield of mixed milk FA but increased yield of preformed milk FA (65.0 g/d) and tended to increase the yield of de novo milk FA. Increasing OA quadratically increased plasma insulin concentration with an increase of 0.18 μg/L at 40 g/d OA, and linearly increased the content of cis-9 C18:1 in plasma triglycerides by 2.82 g/100 g. In conclusion, OA infusion increased FA digestibility and absorption, milk fat yield, and circulating insulin without negatively affecting dry matter intake. In our short-term infusion study, most of the digestion and production measurements responded linearly, indicating that 60 g/d OA was the best dose. Because a quadratic response was not observed, improvements in FA digestibility and production might continue with higher doses of OA, which deserves further attention.

UI MeSH Term Description Entries
D007774 Lactation The processes of milk secretion by the maternal MAMMARY GLANDS after PARTURITION. The proliferation of the mammary glandular tissue, milk synthesis, and milk expulsion or let down are regulated by the interactions of several hormones including ESTRADIOL; PROGESTERONE; PROLACTIN; and OXYTOCIN. Lactation, Prolonged,Milk Secretion,Lactations, Prolonged,Milk Secretions,Prolonged Lactation,Prolonged Lactations
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004032 Diet Regular course of eating and drinking adopted by a person or animal. Diets
D004063 Digestion The process of breakdown of food for metabolism and use by the body.
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000821 Animal Feed Foodstuff used especially for domestic and laboratory animals, or livestock. Fodder,Animal Feeds,Feed, Animal,Feeds, Animal,Fodders
D061385 Insulins Peptide hormones that cause an increase in the absorption of GLUCOSE by cells within organs such as LIVER; MUSCLE and ADIPOSE TISSUE. During normal metabolism insulins are produced by the PANCREATIC BETA CELLS in response to increased GLUCOSE. Natural and chemically-modified forms of insulin are also used in the treatment of GLUCOSE METABOLISM DISORDERS such as DIABETES MELLITUS.
D019301 Oleic Acid An unsaturated fatty acid that is the most widely distributed and abundant fatty acid in nature. It is used commercially in the preparation of oleates and lotions, and as a pharmaceutical solvent. (Stedman, 26th ed) 9-Octadecenoic Acid,Oleate,cis-9-Octadecenoic Acid,9 Octadecenoic Acid,cis 9 Octadecenoic Acid

Related Publications

C M Prom, and J M Dos Santos Neto, and J R Newbold, and A L Lock
July 2020, Journal of dairy science,
C M Prom, and J M Dos Santos Neto, and J R Newbold, and A L Lock
June 2008, Journal of dairy science,
C M Prom, and J M Dos Santos Neto, and J R Newbold, and A L Lock
November 1996, Journal of dairy science,
C M Prom, and J M Dos Santos Neto, and J R Newbold, and A L Lock
September 2021, Journal of dairy science,
C M Prom, and J M Dos Santos Neto, and J R Newbold, and A L Lock
July 1976, Journal of dairy science,
C M Prom, and J M Dos Santos Neto, and J R Newbold, and A L Lock
June 1996, Journal of dairy science,
C M Prom, and J M Dos Santos Neto, and J R Newbold, and A L Lock
May 2024, Journal of dairy science,
C M Prom, and J M Dos Santos Neto, and J R Newbold, and A L Lock
July 2013, Journal of dairy science,
C M Prom, and J M Dos Santos Neto, and J R Newbold, and A L Lock
May 2002, Journal of dairy science,
C M Prom, and J M Dos Santos Neto, and J R Newbold, and A L Lock
November 2005, Journal of dairy science,
Copied contents to your clipboard!