1α,25-Dihydroxyvitamin D3 promotes angiogenesis by alleviating AGEs-induced autophagy. 2021

Yi Xiong, and Feng Zhou, and Yeyu Liu, and Zumu Yi, and Xinyu Wang, and Yingying Wu, and Ping Gong
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Diabetes mellitus (DM) induces abnormal angiogenesis and results in multiple chronic vascular complications. Previous studies showed that advanced glycation end products (AGEs) up-regulated in diabetic patients and induced a series of cellular effects such as oxidative stress, inflammation, and autophagy. 1α,25-Dihydroxyvitamin D3 (1,25D), a hormonal form of vitamin D, proved to be beneficial for vascular diseases. However, the underlying mechanism of 1,25D in angiogenesis in DM remains unclear. Using CCK8 assay and transwell assay, we found that 1,25D could partly ameliorate impaired proliferation and migration ability of endothelial cells (ECs) induced by AGEs (200 μg/mL). Furthermore, tube formation assay, Western blot, and real-time qPCR assay were conducted to demonstrate that AGEs impaired angiogenetic ability, and that angiogenesis-related gene expression (i.e., VEGFA, VEGFB, VEGFR1, VEGFR2, TGFβ1, MMP2, MMP9) in ECs and 1,25D could promote angiogenesis and angiogenetic markers expression. By using DCFH-DA, ELISA, and Western blot assay, we also found that AGEs-induced oxidative stress impaired angiogenic ability of ECs, and 1,25D alleviated angiogenesis dysfunction by inhibiting oxidative stress. Of note, AGEs-induced excessive autophagy was found to impair angiogenesis. We elucidated that the detrimental autophagy is modulated by 1,25D and AGEs via PI3K/Akt pathway. Observed together, our findings illustrated that AGEs-induced oxidative stress and autophagy resulted in angiogenic disorder and 1,25D improved angiogenesis by restraining excessive autophagy and oxidative stress, providing a novel insight for the treatment of vascular complications in DM.

UI MeSH Term Description Entries
D002117 Calcitriol The physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption. 1 alpha,25-Dihydroxycholecalciferol,1 alpha,25-Dihydroxyvitamin D3,1, 25-(OH)2D3,1,25(OH)2D3,1,25-Dihydroxycholecalciferol,1,25-Dihydroxyvitamin D3,1 alpha, 25-dihydroxy-20-epi-Vitamin D3,1,25(OH)2-20epi-D3,1,25-dihydroxy-20-epi-Vitamin D3,20-epi-1alpha,25-dihydroxycholecaliferol,Bocatriol,Calcijex,Calcitriol KyraMed,Calcitriol-Nefro,Decostriol,MC-1288,MC1288,Osteotriol,Renatriol,Rocaltrol,Silkis,Sitriol,Soltriol,Tirocal,1 alpha,25 Dihydroxyvitamin D3,1,25 Dihydroxycholecalciferol,1,25 Dihydroxyvitamin D3,1,25 dihydroxy 20 epi Vitamin D3,Calcitriol Nefro,D3, 1 alpha,25-Dihydroxyvitamin,D3, 1,25-Dihydroxyvitamin,D3, 1,25-dihydroxy-20-epi-Vitamin,KyraMed, Calcitriol,MC 1288
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001343 Autophagy The segregation and degradation of various cytoplasmic constituents via engulfment by MULTIVESICULAR BODIES; VACUOLES; or AUTOPHAGOSOMES and their digestion by LYSOSOMES. It plays an important role in BIOLOGICAL METAMORPHOSIS and in the removal of bone by OSTEOCLASTS. Defective autophagy is associated with various diseases, including NEURODEGENERATIVE DISEASES and cancer. Autophagocytosis,ER-Phagy,Lipophagy,Nucleophagy,Reticulophagy,Ribophagy,Autophagy, Cellular,Cellular Autophagy,ER Phagy
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015854 Up-Regulation A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Up-Regulation,Upregulation,Up-Regulation (Physiology),Up Regulation
D017127 Glycation End Products, Advanced A heterogeneous group of compounds derived from rearrangements, oxidation, and cross-linking reactions that follow from non-enzymatic glycation of amino groups in PROTEINS; LIPIDS; or NUCLEIC ACIDS. Their accumulation in vivo accelerates under hyperglycemic, oxidative, or inflammatory conditions. Heat also accelerates the formation of advanced glycation end products (AGEs) such seen with the browning of food during cooking. Advanced Glycation End Product,Advanced Glycation Endproduct,Advanced Maillard Reaction End Product,Glycated Lipids,Glycotoxins,Maillard Product,Maillard Reaction End Product,Maillard Reaction Product,Advanced Glycation End Products,Advanced Glycation Endproducts,Advanced Maillard Reaction End Products,Glycation Endproducts, Advanced,Maillard Products,Maillard Reaction End Products,Maillard Reaction Products,Glycation Endproduct, Advanced,Lipids, Glycated,Product, Maillard Reaction,Products, Maillard,Products, Maillard Reaction,Reaction Products, Maillard
D017382 Reactive Oxygen Species Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of SIGNAL TRANSDUCTION and GENE EXPRESSION, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS. Active Oxygen Species,Oxygen Radical,Oxygen Radicals,Pro-Oxidant,Reactive Oxygen Intermediates,Active Oxygen,Oxygen Species, Reactive,Pro-Oxidants,Oxygen, Active,Pro Oxidant,Pro Oxidants,Radical, Oxygen
D042783 Endothelial Cells Highly specialized EPITHELIAL CELLS that line the HEART; BLOOD VESSELS; and lymph vessels, forming the ENDOTHELIUM. They are polygonal in shape and joined together by TIGHT JUNCTIONS. The tight junctions allow for variable permeability to specific macromolecules that are transported across the endothelial layer. Capillary Endothelial Cells,Lymphatic Endothelial Cells,Vascular Endothelial Cells,Capillary Endothelial Cell,Cell, Capillary Endothelial,Cell, Endothelial,Cell, Lymphatic Endothelial,Cell, Vascular Endothelial,Cells, Capillary Endothelial,Cells, Endothelial,Cells, Lymphatic Endothelial,Cells, Vascular Endothelial,Endothelial Cell,Endothelial Cell, Capillary,Endothelial Cell, Lymphatic,Endothelial Cell, Vascular,Endothelial Cells, Capillary,Endothelial Cells, Lymphatic,Endothelial Cells, Vascular,Lymphatic Endothelial Cell,Vascular Endothelial Cell

Related Publications

Yi Xiong, and Feng Zhou, and Yeyu Liu, and Zumu Yi, and Xinyu Wang, and Yingying Wu, and Ping Gong
January 2021, The Journal of biological chemistry,
Yi Xiong, and Feng Zhou, and Yeyu Liu, and Zumu Yi, and Xinyu Wang, and Yingying Wu, and Ping Gong
November 2017, The Journal of steroid biochemistry and molecular biology,
Yi Xiong, and Feng Zhou, and Yeyu Liu, and Zumu Yi, and Xinyu Wang, and Yingying Wu, and Ping Gong
September 2018, Endocrine connections,
Yi Xiong, and Feng Zhou, and Yeyu Liu, and Zumu Yi, and Xinyu Wang, and Yingying Wu, and Ping Gong
September 2016, FEBS open bio,
Yi Xiong, and Feng Zhou, and Yeyu Liu, and Zumu Yi, and Xinyu Wang, and Yingying Wu, and Ping Gong
July 2012, Thorax,
Yi Xiong, and Feng Zhou, and Yeyu Liu, and Zumu Yi, and Xinyu Wang, and Yingying Wu, and Ping Gong
January 2022, Frontiers in cardiovascular medicine,
Yi Xiong, and Feng Zhou, and Yeyu Liu, and Zumu Yi, and Xinyu Wang, and Yingying Wu, and Ping Gong
January 2015, Experimental lung research,
Yi Xiong, and Feng Zhou, and Yeyu Liu, and Zumu Yi, and Xinyu Wang, and Yingying Wu, and Ping Gong
November 2021, Anticancer research,
Yi Xiong, and Feng Zhou, and Yeyu Liu, and Zumu Yi, and Xinyu Wang, and Yingying Wu, and Ping Gong
October 2017, The Journal of steroid biochemistry and molecular biology,
Yi Xiong, and Feng Zhou, and Yeyu Liu, and Zumu Yi, and Xinyu Wang, and Yingying Wu, and Ping Gong
October 2021, In vitro cellular & developmental biology. Animal,
Copied contents to your clipboard!