Selenium and vitamin E inhibit radiogenic and chemically induced transformation in vitro via different mechanisms. 1986

C Borek, and A Ong, and H Mason, and L Donahue, and J E Biaglow

Results from in vivo and in vitro studies showing that antioxidants may act as anticarcinogens support the role of active oxygen in carcinogenesis and provide impetus for exploring the functions of dietary antioxidants in cancer prevention by using in vitro models. We examined the single and combined effects of selenium, a component of glutathione peroxidase, and vitamin E, a known antioxidant, on cell transformation induced in C3H/10T-1/2 cells by x-rays, benzo[a]pyrene, or tryptophan pyrolysate and on the levels of cellular scavenging systems and peroxide destruction. Incubation of C3H/10T-1/2 cells with 2.5 microM Na2SeO3 (selenium) or with 7 microM alpha-tocopherol succinate (vitamin E) 24 hr prior to exposure to x-rays or the chemical carcinogens resulted in an inhibition of transformation by each of the antioxidants with an additive-inhibitory action when the two nutrients were combined. Cellular pretreatment with selenium resulted in increased levels of cellular glutathione peroxidase, catalase, and nonprotein thiols (glutathione) and in an enhanced destruction of peroxide. Cells pretreated with vitamin E did not show these biochemical effects, and the combined pretreatment with vitamin E and selenium did not augment the effect of selenium on these parameters. The results support our earlier studies showing that free radical-mediated events play a role in radiation and chemically induced transformation. They indicate that selenium and vitamin E act alone and in additive fashion as radioprotecting and chemopreventing agents. The results further suggest that selenium confers protection in part by inducing or activating cellular free-radical scavenging systems and by enhancing peroxide breakdown while vitamin E appears to confer its protection by an alternate complementary mechanism.

UI MeSH Term Description Entries
D010545 Peroxides A group of compounds that contain a bivalent O-O group, i.e., the oxygen atoms are univalent. They can either be inorganic or organic in nature. Such compounds release atomic (nascent) oxygen readily. Thus they are strong oxidizing agents and fire hazards when in contact with combustible materials, especially under high-temperature conditions. The chief industrial uses of peroxides are as oxidizing agents, bleaching agents, and initiators of polymerization. (From Hawley's Condensed Chemical Dictionary, 11th ed) Peroxide
D002243 Carbolines A group of pyrido-indole compounds. Included are any points of fusion of pyridine with the five-membered ring of indole and any derivatives of these compounds. These are similar to CARBAZOLES which are benzo-indoles. Carboline,Pyrido(4,3-b)Indole,Beta-Carbolines,Pyrido(4,3-b)Indoles,Beta Carbolines
D002374 Catalase An oxidoreductase that catalyzes the conversion of HYDROGEN PEROXIDE to water and oxygen. It is present in many animal cells. A deficiency of this enzyme results in ACATALASIA. Catalase A,Catalase T,Manganese Catalase,Mn Catalase
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D005979 Glutathione Peroxidase An enzyme catalyzing the oxidation of 2 moles of GLUTATHIONE in the presence of HYDROGEN PEROXIDE to yield oxidized glutathione and water. Cytosolic Glutathione Peroxidase,Glutathione Lipoperoxidase,Selenoglutathione Peroxidase,Glutathione Peroxidase, Cytosolic,Lipoperoxidase, Glutathione,Peroxidase, Glutathione,Peroxidase, Selenoglutathione
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001564 Benzo(a)pyrene A potent mutagen and carcinogen. It is a public health concern because of its possible effects on industrial workers, as an environmental pollutant, an as a component of tobacco smoke. 3,4-Benzopyrene,3,4-Benzpyrene,3,4 Benzopyrene,3,4 Benzpyrene

Related Publications

C Borek, and A Ong, and H Mason, and L Donahue, and J E Biaglow
June 1996, Digestive diseases and sciences,
C Borek, and A Ong, and H Mason, and L Donahue, and J E Biaglow
January 1985, Pharmacology & therapeutics,
C Borek, and A Ong, and H Mason, and L Donahue, and J E Biaglow
October 1986, Agents and actions,
C Borek, and A Ong, and H Mason, and L Donahue, and J E Biaglow
June 1979, Federation proceedings,
C Borek, and A Ong, and H Mason, and L Donahue, and J E Biaglow
July 2001, The Veterinary clinics of North America. Food animal practice,
C Borek, and A Ong, and H Mason, and L Donahue, and J E Biaglow
February 1986, Journal of the American Veterinary Medical Association,
C Borek, and A Ong, and H Mason, and L Donahue, and J E Biaglow
January 1974, Vitamins and hormones,
C Borek, and A Ong, and H Mason, and L Donahue, and J E Biaglow
January 1996, Radiation oncology investigations,
C Borek, and A Ong, and H Mason, and L Donahue, and J E Biaglow
May 1958, Nutrition reviews,
C Borek, and A Ong, and H Mason, and L Donahue, and J E Biaglow
June 1958, Nutrition reviews,
Copied contents to your clipboard!