Electromagnetic stimulation increases mitochondrial function in osteogenic cells and promotes bone fracture repair. 2021

Alex M Hollenberg, and Aric Huber, and Charles O Smith, and Roman A Eliseev
Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA.

Bone fracture is a growing public health burden and there is a clinical need for non-invasive therapies to aid in the fracture healing process. Previous studies have demonstrated the utility of electromagnetic (EM) fields in promoting bone repair; however, its underlying mechanism of action is unclear. Interestingly, there is a growing body of literature describing positive effects of an EM field on mitochondria. In our own work, we have previously demonstrated that differentiation of osteoprogenitors into osteoblasts involves activation of mitochondrial oxidative phosphorylation (OxPhos). Therefore, it was reasonable to propose that EM field therapy exerts bone anabolic effects via stimulation of mitochondrial OxPhos. In this study, we show that application of a low intensity constant EM field source on osteogenic cells in vitro resulted in increased mitochondrial membrane potential and respiratory complex I activity and induced osteogenic differentiation. In the presence of mitochondrial inhibitor antimycin A, the osteoinductive effect was reversed, confirming that this effect was mediated via increased OxPhos activity. Using a mouse tibial bone fracture model in vivo, we show that application of a low intensity constant EM field source enhanced fracture repair via improved biomechanical properties and increased callus bone mineralization. Overall, this study provides supporting evidence that EM field therapy promotes bone fracture repair through mitochondrial OxPhos activation.

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D010006 Osteoblasts Bone-forming cells which secrete an EXTRACELLULAR MATRIX. HYDROXYAPATITE crystals are then deposited into the matrix to form bone. Osteoblast
D010012 Osteogenesis The process of bone formation. Histogenesis of bone including ossification. Bone Formation,Ossification, Physiologic,Endochondral Ossification,Ossification,Ossification, Physiological,Osteoclastogenesis,Physiologic Ossification,Endochondral Ossifications,Ossification, Endochondral,Ossifications,Ossifications, Endochondral,Osteoclastogeneses,Physiological Ossification
D010085 Oxidative Phosphorylation Electron transfer through the cytochrome system liberating free energy which is transformed into high-energy phosphate bonds. Phosphorylation, Oxidative,Oxidative Phosphorylations,Phosphorylations, Oxidative
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017102 Fracture Healing The physiological restoration of bone tissue and function after a fracture. It includes BONY CALLUS formation and normal replacement of bone tissue. Fracture Healings,Healing, Fracture,Healings, Fracture
D050723 Fractures, Bone Breaks in bones. Bone Fractures,Broken Bones,Spiral Fractures,Torsion Fractures,Bone Fracture,Bone, Broken,Bones, Broken,Broken Bone,Fracture, Bone,Fracture, Spiral,Fracture, Torsion,Fractures, Spiral,Fractures, Torsion,Spiral Fracture,Torsion Fracture

Related Publications

Alex M Hollenberg, and Aric Huber, and Charles O Smith, and Roman A Eliseev
November 2017, Scientific reports,
Alex M Hollenberg, and Aric Huber, and Charles O Smith, and Roman A Eliseev
March 2017, Zeitschrift fur Rheumatologie,
Alex M Hollenberg, and Aric Huber, and Charles O Smith, and Roman A Eliseev
August 2018, Calcified tissue international,
Alex M Hollenberg, and Aric Huber, and Charles O Smith, and Roman A Eliseev
April 2024, Journal of cellular biochemistry,
Alex M Hollenberg, and Aric Huber, and Charles O Smith, and Roman A Eliseev
December 2017, Nature communications,
Alex M Hollenberg, and Aric Huber, and Charles O Smith, and Roman A Eliseev
November 1991, Journal of orthopaedic research : official publication of the Orthopaedic Research Society,
Alex M Hollenberg, and Aric Huber, and Charles O Smith, and Roman A Eliseev
December 2019, Molecular medicine reports,
Alex M Hollenberg, and Aric Huber, and Charles O Smith, and Roman A Eliseev
June 2021, Cell calcium,
Alex M Hollenberg, and Aric Huber, and Charles O Smith, and Roman A Eliseev
December 2018, Biology open,
Alex M Hollenberg, and Aric Huber, and Charles O Smith, and Roman A Eliseev
April 2016, Zeitschrift fur Rheumatologie,
Copied contents to your clipboard!