Automatic Parking System Based on Improved Neural Network Algorithm and Intelligent Image Analysis. 2021

Yucheng Guo, and Hongtao Shi
Qingdao Jimo District Administration Examination and Approval Service Bureau of Shandong Province, Qingdao, Shandong 266200, China.

This research designs an intelligent parking system including service application layer, perception layer, data analysis layer, and management layer. The network system adopts opm15 system, and the parking space recognition adopts improved convolution neural networks (CNNs) algorithm and image recognition technology. Firstly, the parking space is occupied and located, and the shortest path (Dynamic Programming, DP) is selected. In order to describe the path algorithm, the parking system model is established. Aiming at the problems of DP low power and adjacent path interference in the path detection system, a method of combining interference elimination technology with enhanced detector technology is proposed to effectively eliminate the interference path signal and improve the performance of the intelligent parking system. In order to verify whether the CNNs system designed in this study has advantages, the simulation experiments of CNNs, ZigBee, and manual parking are carried out. The results show that the parking system designed in this study can control the parking error, has smaller parking error than ZigBee, and has more than 25.64% less parking time than ZigBee, and more than 34.83% less time than manual parking. In terms of parking energy consumption, when there are less free parking spaces, CNNs have lower energy consumption.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D016571 Neural Networks, Computer A computer architecture, implementable in either hardware or software, modeled after biological neural networks. Like the biological system in which the processing capability is a result of the interconnection strengths between arrays of nonlinear processing nodes, computerized neural networks, often called perceptrons or multilayer connectionist models, consist of neuron-like units. A homogeneous group of units makes up a layer. These networks are good at pattern recognition. They are adaptive, performing tasks by example, and thus are better for decision-making than are linear learning machines or cluster analysis. They do not require explicit programming. Computational Neural Networks,Connectionist Models,Models, Neural Network,Neural Network Models,Neural Networks (Computer),Perceptrons,Computational Neural Network,Computer Neural Network,Computer Neural Networks,Connectionist Model,Model, Connectionist,Model, Neural Network,Models, Connectionist,Network Model, Neural,Network Models, Neural,Network, Computational Neural,Network, Computer Neural,Network, Neural (Computer),Networks, Computational Neural,Networks, Computer Neural,Networks, Neural (Computer),Neural Network (Computer),Neural Network Model,Neural Network, Computational,Neural Network, Computer,Neural Networks, Computational,Perceptron

Related Publications

Yucheng Guo, and Hongtao Shi
January 2023, Computational intelligence and neuroscience,
Yucheng Guo, and Hongtao Shi
January 2022, Computational intelligence and neuroscience,
Yucheng Guo, and Hongtao Shi
January 2023, Computational intelligence and neuroscience,
Yucheng Guo, and Hongtao Shi
January 2022, Computational intelligence and neuroscience,
Yucheng Guo, and Hongtao Shi
January 2021, Computational intelligence and neuroscience,
Yucheng Guo, and Hongtao Shi
January 2019, Computational and mathematical methods in medicine,
Yucheng Guo, and Hongtao Shi
January 2019, Sensors (Basel, Switzerland),
Yucheng Guo, and Hongtao Shi
January 2022, Computational intelligence and neuroscience,
Yucheng Guo, and Hongtao Shi
January 2022, Applied bionics and biomechanics,
Yucheng Guo, and Hongtao Shi
January 2022, Applied bionics and biomechanics,
Copied contents to your clipboard!