Cytogenetic characterization of putative human myeloblastic leukemia cell lines (ML-1, -2, and -3): origin of the cells. 1986

K Ohyashiki, and J H Ohyashiki, and A A Sandberg

Cytogenetic studies were performed on ML cell lines (ML-1, -2, and -3), as well as on the leukemic cells of a patient from whom the ML cells were derived. The ML-1 cell line showed numerical and structural cytogenetic changes, i.e., -Y, 1p-, 6q-, 11q-, +12, +13q+, 14q-, and 17q-. The ML-2 cell line had two copies of the 13q+, whereas the ML-3 cells contained three clones, i.e., 47,X,-Y,1p-,6q-,11q-,+12,+13q+, 48,X,-Y,1p-,6q-,+6q-,11q-,+12,+13q+, and 49,X,-Y,1p-,6q-,+6q-, 11q-,+12,+13q+,+13q+. The neoplastic cells, when the patient was diagnosed as having T-cell malignant lymphoma (Stage IV), had the 11q- and 13q+. The leukemic cells in a subsequent acute myeloid leukemia phase of this patient contained structural (1p- and 6q-) and numerical (+12, -Y and +2D-group chromosomes: two 13q+) changes in addition to the 11q-. These findings suggest that the acute myeloid leukemic cells of this patient probably originated from the neoplastic cells of the preceding T-cell lymphoma, and that the chromosome changes originally seen in the lymphoma cells were preserved in the established ML cell lines, though the cells of these lines had myeloid characteristics.

UI MeSH Term Description Entries
D007621 Karyotyping Mapping of the KARYOTYPE of a cell. Karyotype Analysis Methods,Analysis Method, Karyotype,Analysis Methods, Karyotype,Karyotype Analysis Method,Karyotypings,Method, Karyotype Analysis,Methods, Karyotype Analysis
D001853 Bone Marrow The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells. Marrow,Red Marrow,Yellow Marrow,Marrow, Bone,Marrow, Red,Marrow, Yellow
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002869 Chromosome Aberrations Abnormal number or structure of chromosomes. Chromosome aberrations may result in CHROMOSOME DISORDERS. Autosome Abnormalities,Cytogenetic Aberrations,Abnormalities, Autosome,Abnormalities, Chromosomal,Abnormalities, Chromosome,Chromosomal Aberrations,Chromosome Abnormalities,Cytogenetic Abnormalities,Aberration, Chromosomal,Aberration, Chromosome,Aberration, Cytogenetic,Aberrations, Chromosomal,Aberrations, Chromosome,Aberrations, Cytogenetic,Abnormalities, Cytogenetic,Abnormality, Autosome,Abnormality, Chromosomal,Abnormality, Chromosome,Abnormality, Cytogenetic,Autosome Abnormality,Chromosomal Aberration,Chromosomal Abnormalities,Chromosomal Abnormality,Chromosome Aberration,Chromosome Abnormality,Cytogenetic Aberration,Cytogenetic Abnormality
D002871 Chromosome Banding Staining of bands, or chromosome segments, allowing the precise identification of individual chromosomes or parts of chromosomes. Applications include the determination of chromosome rearrangements in malformation syndromes and cancer, the chemistry of chromosome segments, chromosome changes during evolution, and, in conjunction with cell hybridization studies, chromosome mapping. Banding, Chromosome,Bandings, Chromosome,Chromosome Bandings
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015470 Leukemia, Myeloid, Acute Clonal expansion of myeloid blasts in bone marrow, blood, and other tissue. Myeloid leukemias develop from changes in cells that normally produce NEUTROPHILS; BASOPHILS; EOSINOPHILS; and MONOCYTES. Leukemia, Myelogenous, Acute,Leukemia, Nonlymphocytic, Acute,Myeloid Leukemia, Acute,Nonlymphocytic Leukemia, Acute,ANLL,Acute Myelogenous Leukemia,Acute Myeloid Leukemia,Acute Myeloid Leukemia with Maturation,Acute Myeloid Leukemia without Maturation,Leukemia, Acute Myelogenous,Leukemia, Acute Myeloid,Leukemia, Myeloblastic, Acute,Leukemia, Myelocytic, Acute,Leukemia, Myeloid, Acute, M1,Leukemia, Myeloid, Acute, M2,Leukemia, Nonlymphoblastic, Acute,Myeloblastic Leukemia, Acute,Myelocytic Leukemia, Acute,Myelogenous Leukemia, Acute,Myeloid Leukemia, Acute, M1,Myeloid Leukemia, Acute, M2,Nonlymphoblastic Leukemia, Acute,Acute Myeloblastic Leukemia,Acute Myeloblastic Leukemias,Acute Myelocytic Leukemia,Acute Myelocytic Leukemias,Acute Myelogenous Leukemias,Acute Myeloid Leukemias,Acute Nonlymphoblastic Leukemia,Acute Nonlymphoblastic Leukemias,Acute Nonlymphocytic Leukemia,Acute Nonlymphocytic Leukemias,Leukemia, Acute Myeloblastic,Leukemia, Acute Myelocytic,Leukemia, Acute Nonlymphoblastic,Leukemia, Acute Nonlymphocytic,Leukemias, Acute Myeloblastic,Leukemias, Acute Myelocytic,Leukemias, Acute Myelogenous,Leukemias, Acute Myeloid,Leukemias, Acute Nonlymphoblastic,Leukemias, Acute Nonlymphocytic,Myeloblastic Leukemias, Acute,Myelocytic Leukemias, Acute,Myelogenous Leukemias, Acute,Myeloid Leukemias, Acute,Nonlymphoblastic Leukemias, Acute,Nonlymphocytic Leukemias, Acute
D025063 Chromosome Disorders Clinical conditions caused by an abnormal chromosome constitution in which there is extra or missing chromosome material (either a whole chromosome or a chromosome segment). (from Thompson et al., Genetics in Medicine, 5th ed, p429) Autosomal Chromosome Disorders,Chromosome Abnormality Disorders,Chromosomal Disorders,Autosomal Chromosome Disorder,Chromosomal Disorder,Chromosome Abnormality Disorder,Chromosome Disorder,Chromosome Disorder, Autosomal,Chromosome Disorders, Autosomal,Disorder, Chromosomal,Disorder, Chromosome,Disorder, Chromosome Abnormality,Disorders, Chromosomal,Disorders, Chromosome

Related Publications

K Ohyashiki, and J H Ohyashiki, and A A Sandberg
January 1986, Proceedings of the Chinese Academy of Medical Sciences and the Peking Union Medical College = Chung-kuo i hsueh k'o hsueh yuan, Chung-kuo hsieh ho i k'o ta hsueh hsueh pao,
K Ohyashiki, and J H Ohyashiki, and A A Sandberg
February 1995, Journal of leukocyte biology,
K Ohyashiki, and J H Ohyashiki, and A A Sandberg
December 1990, Journal of cellular physiology,
K Ohyashiki, and J H Ohyashiki, and A A Sandberg
September 2002, The Journal of biological chemistry,
K Ohyashiki, and J H Ohyashiki, and A A Sandberg
August 1991, The Journal of biological chemistry,
K Ohyashiki, and J H Ohyashiki, and A A Sandberg
January 1995, Advances in enzyme regulation,
Copied contents to your clipboard!