Monitoring Persister Resuscitation with Flow Cytometry. 2021

Sayed Golam Mohiuddin, and Mehmet A Orman
Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA.

Persister cells are defined as a small fraction of phenotypic variants in a cell population that are temporarily tolerant to bactericidal antibiotics. Persisters are not mutant cells; they generally survive lethal concentrations of antibiotics due to their transient nongrowing state. Persister cells have the ability to resuscitate after the end of antibiotic treatment. Despite significant advancements in the understanding of the molecular mechanisms underlying persister formation, we still have little information about their resuscitation mechanisms. In this chapter, we describe a method to detect and monitor persister resuscitation at the single-cell level using flow cytometry analysis. This method enables us to not only assess the resuscitation characteristics of persisters but also determine and quantify various subpopulations in antibiotic-treated cultures, including viable but nonculturable (VBNC) and dead cells.

UI MeSH Term Description Entries
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D050296 Microbial Viability Ability of a microbe to survive under given conditions. This can also be related to a colony's ability to replicate. Bacterial Viability,Virus Viability,Bacteria Viability,Microbial Inactivation,Inactivation, Microbial,Viability, Bacteria,Viability, Bacterial,Viability, Microbial,Viability, Virus

Related Publications

Sayed Golam Mohiuddin, and Mehmet A Orman
January 2017, Methods in molecular biology (Clifton, N.J.),
Sayed Golam Mohiuddin, and Mehmet A Orman
April 2014, Oncology letters,
Sayed Golam Mohiuddin, and Mehmet A Orman
December 2003, Best practice & research. Clinical haematology,
Sayed Golam Mohiuddin, and Mehmet A Orman
March 2021, Cytometry. Part B, Clinical cytometry,
Sayed Golam Mohiuddin, and Mehmet A Orman
January 2007, The Analyst,
Sayed Golam Mohiuddin, and Mehmet A Orman
December 2021, Archives of microbiology,
Sayed Golam Mohiuddin, and Mehmet A Orman
September 2003, Current oncology reports,
Sayed Golam Mohiuddin, and Mehmet A Orman
January 2009, Methods in molecular biology (Clifton, N.J.),
Sayed Golam Mohiuddin, and Mehmet A Orman
January 2011, Methods in cell biology,
Sayed Golam Mohiuddin, and Mehmet A Orman
March 2012, Methods (San Diego, Calif.),
Copied contents to your clipboard!