Astragaloside IV attenuates hypoxia/reoxygenation injury-induced apoptosis of type II alveolar epithelial cells through miR-21-5p. 2021

Hang Li, and Chang Yao, and Kaihu Shi, and Yang Zhao, and Jin Du, and Dinghui Hu, and Zuntao Liu
Department of Cardiothoracic Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.

We aimed to explore the role of miR-21-5p in the inhibitory effects of astragaloside IV (As-IV) on hypoxia/reoxygenation injury-induced apoptosis of type II alveolar epithelial cells. Rat type II alveolar epithelial cells RLE-6TN were cultured in vitro and randomly divided into control (C), hypoxia/reoxygenation injury (H/R), As-IV and miR-21-5p-siRNA + As-IV groups (n = 6). H/R model was established by 24 h of hypoxia and 4 h of reoxygenation. As-IV group was given 1 nmol/L As-IV and incubated for 1 h before modeling. MiR-21-5p-siRNA + As-IV group was transfected with 50 nmol/L miR-21-5p-siRNA. After 48 h, they were incubated with 1 nmol/L As-IV for 1 h before modeling. Cell viability was detected by cell counting kit-8 assay, and apoptosis rate was detected by flow cytometry. The expression levels of TLR4 and NF-κB were measured by immunofluorescence assay. The targeting relationship between miR-21-5p and TLR4 was determined by luciferase assay. Compared with H/R group, the cell viability, miR-21-5p, bax and cleaved caspase-3 expressions of As-IV group increased, apoptosis rate and Bcl-2 expression decreased, and TLR4 and NF-κB expressions were down-regulated (P < 0.05). Compared with As-IV group, the cell viability, miR-21-5p, bax and cleaved caspase-3 expressions of miR-21-5p-siRNA + As-IV group decreased, apoptosis rate and Bcl-2 expression increased, and the expressions of TLR4 and NF-κB were up-regulated (P < 0.05). As-IV up-regulates miR-21-5p expression, inhibits the TLR4/NF-κB signaling pathway and suppresses the apoptosis of type II alveolar epithelial cells during hypoxia/reoxygenation injury.

UI MeSH Term Description Entries
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012503 Saponins A type of glycoside widely distributed in plants. Each consists of a sapogenin as the aglycone moiety, and a sugar. The sapogenin may be a steroid or a triterpene and the sugar may be glucose, galactose, a pentose, or a methylpentose. Saponin
D014315 Triterpenes A class of terpenes (the general formula C30H48) formed by the condensation of six isoprene units, equivalent to three terpene units. Triterpene,Triterpenoid,Triterpenoids
D015687 Cell Hypoxia A condition of decreased oxygen content at the cellular level. Anoxia, Cellular,Cell Anoxia,Hypoxia, Cellular,Anoxia, Cell,Anoxias, Cell,Anoxias, Cellular,Cell Anoxias,Cell Hypoxias,Cellular Anoxia,Cellular Anoxias,Cellular Hypoxia,Cellular Hypoxias,Hypoxia, Cell,Hypoxias, Cell,Hypoxias, Cellular
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D056809 Alveolar Epithelial Cells Epithelial cells that line the PULMONARY ALVEOLI. Pneumocytes,Alveolar Cells,Pneumocyte,Type 1 Pneumocytes,Type 2 Pneumocytes,Type-I Pneumocytes,Type-II Pneumocytes,Alveolar Cell,Alveolar Epithelial Cell,Cell, Alveolar,Cell, Alveolar Epithelial,Cells, Alveolar,Cells, Alveolar Epithelial,Epithelial Cell, Alveolar,Epithelial Cells, Alveolar,Pneumocyte, Type 1,Pneumocyte, Type 2,Pneumocyte, Type-I,Pneumocyte, Type-II,Pneumocytes, Type 1,Pneumocytes, Type 2,Pneumocytes, Type-I,Pneumocytes, Type-II,Type 1 Pneumocyte,Type 2 Pneumocyte,Type I Pneumocytes,Type II Pneumocytes,Type-I Pneumocyte,Type-II Pneumocyte
D035683 MicroRNAs Small double-stranded, non-protein coding RNAs, 21-25 nucleotides in length generated from single-stranded microRNA gene transcripts by the same RIBONUCLEASE III, Dicer, that produces small interfering RNAs (RNA, SMALL INTERFERING). They become part of the RNA-INDUCED SILENCING COMPLEX and repress the translation (TRANSLATION, GENETIC) of target RNA by binding to homologous 3'UTR region as an imperfect match. The small temporal RNAs (stRNAs), let-7 and lin-4, from C. elegans, are the first 2 miRNAs discovered, and are from a class of miRNAs involved in developmental timing. RNA, Small Temporal,Small Temporal RNA,miRNA,stRNA,Micro RNA,MicroRNA,Primary MicroRNA,Primary miRNA,miRNAs,pre-miRNA,pri-miRNA,MicroRNA, Primary,RNA, Micro,Temporal RNA, Small,miRNA, Primary,pre miRNA,pri miRNA

Related Publications

Hang Li, and Chang Yao, and Kaihu Shi, and Yang Zhao, and Jin Du, and Dinghui Hu, and Zuntao Liu
April 2018, Molecular medicine reports,
Hang Li, and Chang Yao, and Kaihu Shi, and Yang Zhao, and Jin Du, and Dinghui Hu, and Zuntao Liu
March 2012, Injury,
Hang Li, and Chang Yao, and Kaihu Shi, and Yang Zhao, and Jin Du, and Dinghui Hu, and Zuntao Liu
February 2022, Cardiovascular toxicology,
Hang Li, and Chang Yao, and Kaihu Shi, and Yang Zhao, and Jin Du, and Dinghui Hu, and Zuntao Liu
January 2020, Pharmacology,
Hang Li, and Chang Yao, and Kaihu Shi, and Yang Zhao, and Jin Du, and Dinghui Hu, and Zuntao Liu
July 2020, Molecular and cellular biochemistry,
Hang Li, and Chang Yao, and Kaihu Shi, and Yang Zhao, and Jin Du, and Dinghui Hu, and Zuntao Liu
March 2021, Zhonghua wei zhong bing ji jiu yi xue,
Hang Li, and Chang Yao, and Kaihu Shi, and Yang Zhao, and Jin Du, and Dinghui Hu, and Zuntao Liu
November 2023, Molecular immunology,
Hang Li, and Chang Yao, and Kaihu Shi, and Yang Zhao, and Jin Du, and Dinghui Hu, and Zuntao Liu
December 2022, Genes,
Hang Li, and Chang Yao, and Kaihu Shi, and Yang Zhao, and Jin Du, and Dinghui Hu, and Zuntao Liu
May 2024, Scientific reports,
Hang Li, and Chang Yao, and Kaihu Shi, and Yang Zhao, and Jin Du, and Dinghui Hu, and Zuntao Liu
February 2021, Journal of biochemical and molecular toxicology,
Copied contents to your clipboard!