Discordance of nuclear and mitochondrial DNA phylogenies in Hawaiian Drosophila. 1986

R DeSalle, and L V Giddings

Drosophila differens, endemic to Molokai, Drosophila planitibia of Maui, and Drosophila silvestris and Drosophila heteroneura from the island of Hawaii are chromosomally homosequential species that presumably have colonized the newer islands of the Hawaiian archipelago by sequential founder events. We have examined the phylogenetic relationships of these four species by using mitochondrial DNA restriction site data for 23 enzymes. Both distance and character-state analyses indicate that a sequential or monotonic branching relationship exists for mtDNA restriction site data from the four species. The mtDNA data suggest that the maternal lineage that gave rise to D. differens is ancestral to the D. planitibia maternal lineage, which in turn shares the most recent common ancestor with the D. silvestris and D. heteroneura maternal lineages [with Drosophila hemipeza (Oahu) and Drosophila neopicta (Molokai and Maui) as outside references]. We also discuss the phylogenetic implications of the mtDNA data in comparison with other sources of phylogenetic data. We conclude that hybridization of the species in this group has been an important factor in the evolution of the nuclear genomes. Because of small population sizes and mating asymmetries, it is possible that the nuclear genetic distance of species that are physically capable of hybridizing (e.g., on the same island or island complex) is depressed. Consequently the mtDNA genetic distance appears to be more sensitive in establishing the sequence of evolutionary events responsible for the present distribution and population structure of these species.

UI MeSH Term Description Entries
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004272 DNA, Mitochondrial Double-stranded DNA of MITOCHONDRIA. In eukaryotes, the mitochondrial GENOME is circular and codes for ribosomal RNAs, transfer RNAs, and about 10 proteins. Mitochondrial DNA,mtDNA
D004330 Drosophila A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology. Fruit Fly, Drosophila,Drosophila Fruit Flies,Drosophila Fruit Fly,Drosophilas,Flies, Drosophila Fruit,Fly, Drosophila Fruit,Fruit Flies, Drosophila
D006824 Hybridization, Genetic The genetic process of crossbreeding between genetically dissimilar parents to produce a hybrid. Crossbreeding,Hybridization, Intraspecies,Crossbreedings,Genetic Hybridization,Genetic Hybridizations,Hybridizations, Genetic,Hybridizations, Intraspecies,Intraspecies Hybridization,Intraspecies Hybridizations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R DeSalle, and L V Giddings
April 1997, Evolution; international journal of organic evolution,
R DeSalle, and L V Giddings
July 2003, Journal of molecular evolution,
R DeSalle, and L V Giddings
January 1987, Journal of molecular evolution,
R DeSalle, and L V Giddings
September 1988, Evolution; international journal of organic evolution,
R DeSalle, and L V Giddings
December 2002, Proceedings of the National Academy of Sciences of the United States of America,
R DeSalle, and L V Giddings
August 1995, Evolution; international journal of organic evolution,
R DeSalle, and L V Giddings
February 2011, Molecular phylogenetics and evolution,
R DeSalle, and L V Giddings
October 1993, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!