Regulated expression of the c-myb and c-myc oncogenes during erythroid differentiation. 1986

I R Kirsch, and V Bertness, and J Silver, and G F Hollis

We have investigated the expression of the genes c-myb, c-myc, and alpha globin in murine erythroid cells at different stages of development, in viral-induced erythroleukemias, as well as in two mouse erythroleukemia cell lines that can be induced to terminally differentiate when exposed to dimethylsulfoxide. We find that there is a reciprocal correlation between the cell's production of messenger RNA for c-myb and globin. c-myc message shows a similar but less dramatic decrease coincident with globin RNA production. Initially with the administration of an inducing agent, dimethylsulfoxide, there is a rapid decrease of myc and myb mRNA, which is followed by signs of differentiation in the induced culture. We conclude that these oncogenes function in early maturational stages of development of these cells. In the erythroleukemic state these genes are down-regulated by forced differentiation and may play a direct role in influencing the state of differentiation of these cells.

UI MeSH Term Description Entries
D007942 Leukemia, Experimental Leukemia induced experimentally in animals by exposure to leukemogenic agents, such as VIRUSES; RADIATION; or by TRANSPLANTATION of leukemic tissues. Experimental Leukemia,Experimental Leukemias,Leukemia Model, Animal,Leukemias, Experimental,Animal Leukemia Model,Animal Leukemia Models,Leukemia Models, Animal
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008811 Mice, Inbred DBA An inbred strain of mouse. Specific substrains are used in a variety of areas of BIOMEDICAL RESEARCH such as DBA/1J, which is used as a model for RHEUMATOID ARTHRITIS. Mice, DBA,Mouse, DBA,Mouse, Inbred DBA,DBA Mice,DBA Mice, Inbred,DBA Mouse,DBA Mouse, Inbred,Inbred DBA Mice,Inbred DBA Mouse
D009857 Oncogenes Genes whose gain-of-function alterations lead to NEOPLASTIC CELL TRANSFORMATION. They include, for example, genes for activators or stimulators of CELL PROLIFERATION such as growth factors, growth factor receptors, protein kinases, signal transducers, nuclear phosphoproteins, and transcription factors. A prefix of "v-" before oncogene symbols indicates oncogenes captured and transmitted by RETROVIRUSES; the prefix "c-" before the gene symbol of an oncogene indicates it is the cellular homolog (PROTO-ONCOGENES) of a v-oncogene. Transforming Genes,Oncogene,Transforming Gene,Gene, Transforming,Genes, Transforming
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D004121 Dimethyl Sulfoxide A highly polar organic liquid, that is used widely as a chemical solvent. Because of its ability to penetrate biological membranes, it is used as a vehicle for topical application of pharmaceuticals. It is also used to protect tissue during CRYOPRESERVATION. Dimethyl sulfoxide shows a range of pharmacological activity including analgesia and anti-inflammation. DMSO,Dimethyl Sulphoxide,Dimethylsulfoxide,Dimethylsulphinyl,Dimethylsulphoxide,Dimexide,Rheumabene,Rimso,Rimso 100,Rimso-50,Sclerosol,Sulfinylbis(methane),Rimso 50,Rimso50,Sulfoxide, Dimethyl,Sulphoxide, Dimethyl
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle

Related Publications

I R Kirsch, and V Bertness, and J Silver, and G F Hollis
January 1984, Nature,
I R Kirsch, and V Bertness, and J Silver, and G F Hollis
January 1987, Journal of biological regulators and homeostatic agents,
I R Kirsch, and V Bertness, and J Silver, and G F Hollis
January 1989, Haematology and blood transfusion,
I R Kirsch, and V Bertness, and J Silver, and G F Hollis
April 1994, Seminars in cancer biology,
I R Kirsch, and V Bertness, and J Silver, and G F Hollis
December 1989, Cancer research,
I R Kirsch, and V Bertness, and J Silver, and G F Hollis
October 1992, The Tohoku journal of experimental medicine,
I R Kirsch, and V Bertness, and J Silver, and G F Hollis
January 1986, Current topics in microbiology and immunology,
I R Kirsch, and V Bertness, and J Silver, and G F Hollis
April 1999, Leukemia & lymphoma,
I R Kirsch, and V Bertness, and J Silver, and G F Hollis
March 1986, Biochemical and biophysical research communications,
I R Kirsch, and V Bertness, and J Silver, and G F Hollis
May 1987, Blood,
Copied contents to your clipboard!