Analysis of centromeric DNA in the fission yeast Schizosaccharomyces pombe. 1986

L Clarke, and H Amstutz, and B Fishel, and J Carbon

The Schizosaccharomyces pombe centromere-linked genes, LYS1 and CYH1 on chromosome I and TPS13 and RAN1 on chromosome II, have been isolated. The genetic order of these markers with respect to their centromeres was determined to establish relative directionality on the genetic and physical maps. Chromosome walking toward the centromeres reveals a group of repetitive sequences that occur only in the centromere regions of chromosomes I and II and at one other specific location in the S. pombe genome, presumably the centromere of chromosome III. The major class of large repeated sequence elements is 6.4 kilobases (kb) long (repeat K), portions of which occur at least twice on chromosome II and in several tandemly arranged intact copies at another centromeric location. Repeat K in turn contains groups of smaller repeats. Genetic recombination is strongly suppressed in the centromere II region, which contains at least 30 kb of repeated sequences. Centromeric DNA organization is much more complex in fission yeast than has been described in budding yeast (Saccharomyces cerevisiae), possibly because of the larger more condensed nature of the S. pombe chromosomes.

UI MeSH Term Description Entries
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D002503 Centromere The clear constricted portion of the chromosome at which the chromatids are joined and by which the chromosome is attached to the spindle during cell division. Centromeres
D002875 Chromosomes In a prokaryotic cell or in the nucleus of a eukaryotic cell, a structure consisting of or containing DNA which carries the genetic information essential to the cell. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Chromosome
D004271 DNA, Fungal Deoxyribonucleic acid that makes up the genetic material of fungi. Fungal DNA
D004718 Saccharomycetales An order of fungi in the phylum Ascomycota that multiply by budding. They include the telomorphic ascomycetous yeasts which are found in a very wide range of habitats. Budding Yeast,Endomycetales,Endomycopsis,Yeast, Budding,Budding Yeasts,Endomycetale,Endomycopses,Saccharomycetale,Yeasts, Budding
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012568 Schizosaccharomyces A genus of ascomycetous fungi of the family Schizosaccharomycetaceae, order Schizosaccharomycetales. Fission Yeast,Schizosaccharomyces malidevorans,Schizosaccharomyces pombe,Yeast, Fission,S pombe,Fission Yeasts

Related Publications

L Clarke, and H Amstutz, and B Fishel, and J Carbon
April 1970, Experimental cell research,
L Clarke, and H Amstutz, and B Fishel, and J Carbon
January 1991, Mutation research,
L Clarke, and H Amstutz, and B Fishel, and J Carbon
December 1969, Biochimica et biophysica acta,
L Clarke, and H Amstutz, and B Fishel, and J Carbon
April 1990, BioEssays : news and reviews in molecular, cellular and developmental biology,
L Clarke, and H Amstutz, and B Fishel, and J Carbon
January 1998, Experimental cell research,
L Clarke, and H Amstutz, and B Fishel, and J Carbon
January 1991, Methods in enzymology,
L Clarke, and H Amstutz, and B Fishel, and J Carbon
January 1997, Methods in enzymology,
L Clarke, and H Amstutz, and B Fishel, and J Carbon
January 2004, Methods in molecular biology (Clifton, N.J.),
L Clarke, and H Amstutz, and B Fishel, and J Carbon
April 2010, FEBS letters,
L Clarke, and H Amstutz, and B Fishel, and J Carbon
July 1994, Genetics,
Copied contents to your clipboard!