Purification and properties of epithelial growth inhibitor (EGI) from human platelets: its separation from type beta transforming growth factor (TGF-beta). 1986

W Huang, and T Kimura, and K Mashima, and K Miyazaki, and H Masaki, and J Yamashita, and T Horio

We previously reported that sera from various kinds of animals contain a protein(s) capable of inhibiting the growth of the non-malignant epithelial cell line derived from Buffalo rat liver (BRL). In the present study, a similar epithelial cell-specific growth inhibitor (EGI) was purified to homogeneity from an acid-ethanol extract of human platelets. During purification, EGI was separated from the major component of type beta transforming growth factor (TGF-beta), which can stimulate the colony formation of the non-malignant fibroblastic cell line derived from rat kidney (NRK) in soft agar in the presence of epidermal growth factor (EGF). The purified EGI had an Mr of 27,000, and was composed of two subunits identical in Mr. It significantly inhibited the growth in monolayer cultures of three non-malignant epithelial cell lines, BRL, MDCK (from Madin-Darby canine kidney) and BSC-1 (from African green monkey kidney), at doses lower than 40 pg/ml in medium containing 10% fetal calf serum. Its inhibitory activity was stable against heating at 90 degrees C for 3 min, but not against treatment with 50 mM dithiothreitol. In addition, TGF-beta was also partially purified from the same extract. The purified TGF-beta did not show any inhibitory activity toward the growth of BRL, MDCK, BSC-1, or NRK.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D006131 Growth Inhibitors Endogenous or exogenous substances which inhibit the normal growth of human and animal cells or micro-organisms, as distinguished from those affecting plant growth ( Cell Growth Inhibitor,Cell Growth Inhibitors,Growth Inhibitor,Growth Inhibitor, Cell,Growth Inhibitors, Cell,Inhibitor, Cell Growth,Inhibitor, Growth,Inhibitors, Cell Growth,Inhibitors, Growth
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015291 Transforming Growth Factors Hormonally active polypeptides that can induce the transformed phenotype when added to normal, non-transformed cells. They have been found in culture fluids from retrovirally transformed cells and in tumor-derived cells as well as in non-neoplastic sources. Their transforming activities are due to the simultaneous action of two otherwise unrelated factors, TRANSFORMING GROWTH FACTOR ALPHA and TRANSFORMING GROWTH FACTOR BETA. Transforming Growth Factor,Factor, Transforming Growth,Factors, Transforming Growth,Growth Factor, Transforming,Growth Factors, Transforming

Related Publications

W Huang, and T Kimura, and K Mashima, and K Miyazaki, and H Masaki, and J Yamashita, and T Horio
January 1987, Methods in enzymology,
W Huang, and T Kimura, and K Mashima, and K Miyazaki, and H Masaki, and J Yamashita, and T Horio
November 1996, Die Pharmazie,
W Huang, and T Kimura, and K Mashima, and K Miyazaki, and H Masaki, and J Yamashita, and T Horio
January 1988, Analytical biochemistry,
W Huang, and T Kimura, and K Mashima, and K Miyazaki, and H Masaki, and J Yamashita, and T Horio
November 1988, Biochemical and biophysical research communications,
W Huang, and T Kimura, and K Mashima, and K Miyazaki, and H Masaki, and J Yamashita, and T Horio
December 1983, Biochemistry,
W Huang, and T Kimura, and K Mashima, and K Miyazaki, and H Masaki, and J Yamashita, and T Horio
November 1986, Biochemical and biophysical research communications,
W Huang, and T Kimura, and K Mashima, and K Miyazaki, and H Masaki, and J Yamashita, and T Horio
October 1986, Cancer research,
W Huang, and T Kimura, and K Mashima, and K Miyazaki, and H Masaki, and J Yamashita, and T Horio
April 1992, Experientia,
W Huang, and T Kimura, and K Mashima, and K Miyazaki, and H Masaki, and J Yamashita, and T Horio
October 1993, Clinical and experimental immunology,
W Huang, and T Kimura, and K Mashima, and K Miyazaki, and H Masaki, and J Yamashita, and T Horio
March 1998, The international journal of biochemistry & cell biology,
Copied contents to your clipboard!