[ANXA8 Regulates Proliferation of Human Non-Small Lung Cancer Cells A549 via EGFR-AKT-mTOR Signaling Pathway]. 2021

G-Z Zhou, and Y-H Sun, and Y-Y Shi, and Q Zhang, and L Zhang, and L-Q Cui, and G-C Sun
College of Bioengineering, Henan University of Technology, Zhengzhou, 450001 China.

Annexin A8 (ANXA8) is a member of the annexin family, which had been reported to regulate multiple cancer cellular processes including proliferation, metastasis and inflammation. However, the specific role of ANXA8 in lung cancer cell biology remains unknown. Our previous transcriptome study revealed that ANXA8 mRNA was downregulated in curcumin analog (MHMD) -treated human non-small lung cancer cells (A549 cell line). Here, we continued to study the ANXA8 expression in A549 cells using reverse transcription-quantitative PCR and Western blotting, compared with that in human normal bronchial epithelium cells (BE-AS-2B cell line). Overexpression of ANXA8 via transfection of pEGFP-ANXA8 recombinant vector contributed to the proliferation and migration of A549 cells. Moreover, the cell cycle protein cyclin E1 was upregulated in ANXA8-transfected A549 cells. Knockdown of ANXA8 using an RNA interference technique decreased A549 cell viability and restrained their migration in vitro. The expression levels of multiple cellular factors, including EGFR, PI3K, Akt, mTOR, p70S6K and 4EBP1, in the epidermal growth factor receptor (EGFR) signaling pathway were also altered by ANXA8 knockdown or overexpression in A549 cells, which confirmed the activation of the EGFR/Akt/mTOR signaling pathway by ANXA8. The present results provided evidence to support further investigation of the functional identification of ANXA8 in lung cancer cells in the future.

UI MeSH Term Description Entries
D008175 Lung Neoplasms Tumors or cancer of the LUNG. Cancer of Lung,Lung Cancer,Pulmonary Cancer,Pulmonary Neoplasms,Cancer of the Lung,Neoplasms, Lung,Neoplasms, Pulmonary,Cancer, Lung,Cancer, Pulmonary,Cancers, Lung,Cancers, Pulmonary,Lung Cancers,Lung Neoplasm,Neoplasm, Lung,Neoplasm, Pulmonary,Pulmonary Cancers,Pulmonary Neoplasm
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000072283 A549 Cells An immortalized cell line derived from human ADENOCARCINOMA, ALVEOLAR basal epithelial cells isolated from the lungs of a male patient in 1972. The cell line is positive for KERATIN, can synthesize LECITHIN, and contains high levels of POLYUNSATURATED FATTY ACIDS in its PLASMA MEMBRANE. It is used as a model for PULMONARY ALVEOLI function and virus infections, as a TRANSFECTION host, and for PRECLINICAL DRUG EVALUATION. A549 Cell Line,A549 Cell,A549 Cell Lines,Cell Line, A549,Cell Lines, A549,Cell, A549,Cells, A549
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017302 Annexins Family of calcium- and phospholipid-binding proteins which are structurally related and exhibit immunological cross-reactivity. Each member contains four homologous 70-kDa repeats. The annexins are differentially distributed in vertebrate tissues (and lower eukaryotes) and appear to be involved in MEMBRANE FUSION and SIGNAL TRANSDUCTION. Annexin,Annexin A11,Annexin A8,Annexin B10,Annexin B9,Annexin IX,Annexin VIII,Annexin X,Annexin XI,Calcimedin,Calcimedins,Calelectrins,Calpactins,Lipocortins,Calelectrin,Calpactin,Chromobindins,Lipocortin
D049109 Cell Proliferation All of the processes involved in increasing CELL NUMBER including CELL DIVISION. Cell Growth in Number,Cellular Proliferation,Cell Multiplication,Cell Number Growth,Growth, Cell Number,Multiplication, Cell,Number Growth, Cell,Proliferation, Cell,Proliferation, Cellular
D051057 Proto-Oncogene Proteins c-akt Protein-serine-threonine kinases that contain PLECKSTRIN HOMOLOGY DOMAINS and are activated by PHOSPHORYLATION in response to GROWTH FACTORS or INSULIN. They play a major role in cell metabolism, growth, and survival as a core component of SIGNAL TRANSDUCTION. Three isoforms have been described in mammalian cells. akt Proto-Oncogene Protein,c-akt Protein,AKT1 Protein Kinase,AKT2 Protein Kinase,AKT3 Protein Kinase,Akt-alpha Protein,Akt-beta Protein,Akt-gamma Protein,Protein Kinase B,Protein Kinase B alpha,Protein Kinase B beta,Protein Kinase B gamma,Protein-Serine-Threonine Kinase (Rac),Proto-Oncogene Protein Akt,Proto-Oncogene Protein RAC,Proto-Oncogene Proteins c-akt1,Proto-Oncogene Proteins c-akt2,Proto-Oncogene Proteins c-akt3,RAC-PK Protein,Rac Protein Kinase,Rac-PK alpha Protein,Rac-PK beta Protein,Related to A and C-Protein,c-akt Proto-Oncogene Protein,Akt alpha Protein,Akt beta Protein,Akt gamma Protein,Akt, Proto-Oncogene Protein,Protein, akt Proto-Oncogene,Protein, c-akt Proto-Oncogene,Proteins c-akt1, Proto-Oncogene,Proteins c-akt2, Proto-Oncogene,Proteins c-akt3, Proto-Oncogene,Proto Oncogene Protein Akt,Proto Oncogene Protein RAC,Proto Oncogene Proteins c akt,Proto Oncogene Proteins c akt1,Proto Oncogene Proteins c akt2,Proto Oncogene Proteins c akt3,Proto-Oncogene Protein, akt,Proto-Oncogene Protein, c-akt,RAC PK Protein,RAC, Proto-Oncogene Protein,Rac PK alpha Protein,Rac PK beta Protein,Related to A and C Protein,akt Proto Oncogene Protein,alpha Protein, Rac-PK,c akt Proto Oncogene Protein,c-akt, Proto-Oncogene Proteins,c-akt1, Proto-Oncogene Proteins,c-akt2, Proto-Oncogene Proteins,c-akt3, Proto-Oncogene Proteins
D058570 TOR Serine-Threonine Kinases A serine threonine kinase that controls a wide range of growth-related cellular processes. The protein is referred to as the target of RAPAMYCIN due to the discovery that SIROLIMUS (commonly known as rapamycin) forms an inhibitory complex with TACROLIMUS BINDING PROTEIN 1A that blocks the action of its enzymatic activity. TOR Kinase,TOR Kinases,TOR Serine-Threonine Kinase,Target of Rapamycin Protein,mTOR Serine-Threonine Kinase,mTOR Serine-Threonine Kinases,FK506 Binding Protein 12-Rapamycin Associated Protein 1,FKBP12-Rapamycin Associated Protein,FKBP12-Rapamycin Complex-Associated Protein,Mammalian Target of Rapamycin,Mechanistic Target of Rapamycin Protein,RAFT-1 Protein,Rapamycin Target Protein,Target of Rapamycin Proteins,mTOR Protein,FK506 Binding Protein 12 Rapamycin Associated Protein 1,FKBP12 Rapamycin Associated Protein,FKBP12 Rapamycin Complex Associated Protein,Kinase, TOR,Kinase, TOR Serine-Threonine,Kinase, mTOR Serine-Threonine,Kinases, TOR Serine-Threonine,Kinases, mTOR Serine-Threonine,Protein Target, Rapamycin,Protein, RAFT-1,Protein, mTOR,RAFT 1 Protein,Rapamycin Protein Target,Serine-Threonine Kinase, TOR,Serine-Threonine Kinase, mTOR,Serine-Threonine Kinases, TOR,Serine-Threonine Kinases, mTOR,TOR Serine Threonine Kinase,TOR Serine Threonine Kinases,mTOR Serine Threonine Kinase,mTOR Serine Threonine Kinases
D066246 ErbB Receptors A family of structurally related cell-surface receptors that signal through an intrinsic PROTEIN-TYROSINE KINASE. The receptors are activated upon binding of specific ligands which include EPIDERMAL GROWTH FACTORS, and NEUREGULINS. EGF Receptor,Epidermal Growth Factor Receptor,Epidermal Growth Factor Receptor Family Protein,Epidermal Growth Factor Receptor Protein-Tyrosine Kinase,ErbB Receptor,HER Family Receptor,Receptor, EGF,Receptor, Epidermal Growth Factor,Receptor, TGF-alpha,Receptor, Transforming-Growth Factor alpha,Receptor, Urogastrone,Receptors, Epidermal Growth Factor-Urogastrone,TGF-alpha Receptor,Transforming Growth Factor alpha Receptor,Urogastrone Receptor,c-erbB-1 Protein,erbB-1 Proto-Oncogene Protein,EGF Receptors,Epidermal Growth Factor Receptor Family Proteins,Epidermal Growth Factor Receptor Kinase,HER Family Receptors,Proto-oncogene c-ErbB-1 Protein,Receptor Tyrosine-protein Kinase erbB-1,Receptor, ErbB-1,Receptors, Epidermal Growth Factor,Epidermal Growth Factor Receptor Protein Tyrosine Kinase,ErbB-1 Receptor,Family Receptor, HER,Family Receptors, HER,Proto oncogene c ErbB 1 Protein,Proto-Oncogene Protein, erbB-1,Receptor Tyrosine protein Kinase erbB 1,Receptor, ErbB,Receptor, ErbB 1,Receptor, HER Family,Receptor, TGF alpha,Receptor, Transforming Growth Factor alpha,Receptors, EGF,Receptors, Epidermal Growth Factor Urogastrone,Receptors, ErbB,Receptors, HER Family,c erbB 1 Protein,c-ErbB-1 Protein, Proto-oncogene,erbB 1 Proto Oncogene Protein

Related Publications

G-Z Zhou, and Y-H Sun, and Y-Y Shi, and Q Zhang, and L Zhang, and L-Q Cui, and G-C Sun
January 2017, OncoTargets and therapy,
G-Z Zhou, and Y-H Sun, and Y-Y Shi, and Q Zhang, and L Zhang, and L-Q Cui, and G-C Sun
January 2018, Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer,
G-Z Zhou, and Y-H Sun, and Y-Y Shi, and Q Zhang, and L Zhang, and L-Q Cui, and G-C Sun
January 2019, Reproduction in domestic animals = Zuchthygiene,
G-Z Zhou, and Y-H Sun, and Y-Y Shi, and Q Zhang, and L Zhang, and L-Q Cui, and G-C Sun
February 2019, Biological research,
G-Z Zhou, and Y-H Sun, and Y-Y Shi, and Q Zhang, and L Zhang, and L-Q Cui, and G-C Sun
January 2021, Cancer management and research,
G-Z Zhou, and Y-H Sun, and Y-Y Shi, and Q Zhang, and L Zhang, and L-Q Cui, and G-C Sun
October 2014, Oncology reports,
G-Z Zhou, and Y-H Sun, and Y-Y Shi, and Q Zhang, and L Zhang, and L-Q Cui, and G-C Sun
April 2018, Biochemical and biophysical research communications,
G-Z Zhou, and Y-H Sun, and Y-Y Shi, and Q Zhang, and L Zhang, and L-Q Cui, and G-C Sun
December 2010, Zhongguo fei ai za zhi = Chinese journal of lung cancer,
G-Z Zhou, and Y-H Sun, and Y-Y Shi, and Q Zhang, and L Zhang, and L-Q Cui, and G-C Sun
January 2015, Journal of neuro-oncology,
G-Z Zhou, and Y-H Sun, and Y-Y Shi, and Q Zhang, and L Zhang, and L-Q Cui, and G-C Sun
January 2022, Cancer management and research,
Copied contents to your clipboard!