Cloning and characterization of human liver cDNA encoding a protein S precursor. 1987

J Hoskins, and D K Norman, and R J Beckmann, and G L Long

Human liver cDNA encoding a protein S precursor was isolated from two cDNA libraries by two different techniques. Based upon the frequency of positive clones, the abundance of mRNA for protein S is approximately 0.01%. Blot hybridization of electrophoretically fractionated poly(A)+ RNA revealed a major mRNA approximately 4 kilobases long and two minor forms of approximately 3.1 and approximately equal to 2.6 kilobases. One of the cDNA clones contains a segment encoding a 676 amino acid protein S precursor, as well as 108 and 1132 nucleotides of 5' and 3' noncoding sequence, respectively, plus a poly(A) region at the 3' end. The cDNAs are adenosine plus thymidine-rich (60%) except for the 5' noncoding region, where 78% of the nucleotides are guanosine or cytosine. The protein precursor consists of a 41 amino acid "leader" peptide followed by 635 amino acids corresponding to mature protein S. Comparison of the mature protein region with homologous vitamin K-dependent plasma proteins shows that it is composed of the following domains: an amino-terminal gamma-carboxyglutamic acid-rich region of 37 amino acids; a 36 amino acid linker region rich in hydroxy amino acids; four epidermal growth factor-like segments, each approximately 45 amino acids long; and a 387 amino acid carboxyl-terminal domain of unrecognized structure and unknown function.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011498 Protein Precursors Precursors, Protein
D001798 Blood Proteins Proteins that are present in blood serum, including SERUM ALBUMIN; BLOOD COAGULATION FACTORS; and many other types of proteins. Blood Protein,Plasma Protein,Plasma Proteins,Serum Protein,Serum Proteins,Protein, Blood,Protein, Plasma,Protein, Serum,Proteins, Blood,Proteins, Plasma,Proteins, Serum
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

J Hoskins, and D K Norman, and R J Beckmann, and G L Long
July 1993, Biochemical and biophysical research communications,
J Hoskins, and D K Norman, and R J Beckmann, and G L Long
February 1996, Biochemical and biophysical research communications,
J Hoskins, and D K Norman, and R J Beckmann, and G L Long
July 1993, Gene,
J Hoskins, and D K Norman, and R J Beckmann, and G L Long
September 1991, Biochemistry international,
J Hoskins, and D K Norman, and R J Beckmann, and G L Long
February 1997, Gene,
J Hoskins, and D K Norman, and R J Beckmann, and G L Long
December 1991, Gene,
J Hoskins, and D K Norman, and R J Beckmann, and G L Long
December 1992, Biochemical and biophysical research communications,
J Hoskins, and D K Norman, and R J Beckmann, and G L Long
August 2000, Science in China. Series C, Life sciences,
J Hoskins, and D K Norman, and R J Beckmann, and G L Long
November 1991, Biochemical and biophysical research communications,
Copied contents to your clipboard!