Synthesis, characterization, and anti-tumor properties of O-benzoylselenoglycolic chitosan. 2021

Wanwen Chen, and Hao Cheng, and Lingyun Chen, and Xiaobei Zhan, and Wenshui Xia
School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, China; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Jiangsu, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, China.

This study introduces a facile method for synthesizing O-benzoylselenoglycolic chitosan with a high selenium concentration of 45.32 mg/g. The characterizations of the chemical structure via FTIR, 1H NMR, 13C NMR, TGA, and XRD analyses indicated that benzoylselenoglycolic acid was successfully grafted onto the C6 hydroxyl group of chitosan. The anti-cancer activity of the O-benzoylselenoglycolic chitosan was investigated in vitro using a HepG2 cell model, and the results indicated that it has excellent anticancer activity against HepG2 cancer cells with an IC50 value of 0.53 μg/mL while exhibiting non-toxicity against normal cells (L-02). Furthermore, a mechanistic study revealed that the O-benzoylselenoglycolic chitosan could induce early apoptosis, G2/M, S phase arrest, and activation of caspase-3 activity to inhibit the HepG2 cell growth. This study has led to novel organic selenium species, and the results suggest its potential to be used as an effective ingredient for cancer prevention and therapy in the food and pharmaceutical fields.

UI MeSH Term Description Entries
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D012643 Selenium An element with the atomic symbol Se, atomic number 34, and atomic weight 78.97. It is an essential micronutrient for mammals and other animals but is toxic in large amounts. Selenium protects intracellular structures against oxidative damage. It is an essential component of GLUTATHIONE PEROXIDASE. Selenium-80,Selenium 80
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D048271 Chitosan Deacetylated CHITIN, a linear polysaccharide of deacetylated beta-1,4-D-glucosamine. It is used in HYDROGEL and to treat WOUNDS. Poliglusam
D056945 Hep G2 Cells A human liver tumor cell line used to study a variety of liver-specific metabolic functions. Cell Line, Hep G2,Cell Line, Hepatoblastoma G2,Hep G2 Cell Line,HepG2 Cells,Hepatoblastoma G2 Cell Line,Cell, Hep G2,Cell, HepG2,Cells, Hep G2,Cells, HepG2,Hep G2 Cell,HepG2 Cell

Related Publications

Wanwen Chen, and Hao Cheng, and Lingyun Chen, and Xiaobei Zhan, and Wenshui Xia
October 2016, International journal of biological macromolecules,
Wanwen Chen, and Hao Cheng, and Lingyun Chen, and Xiaobei Zhan, and Wenshui Xia
September 2008, Biomaterials,
Wanwen Chen, and Hao Cheng, and Lingyun Chen, and Xiaobei Zhan, and Wenshui Xia
January 2012, Journal of biomaterials science. Polymer edition,
Wanwen Chen, and Hao Cheng, and Lingyun Chen, and Xiaobei Zhan, and Wenshui Xia
January 2018, New biotechnology,
Wanwen Chen, and Hao Cheng, and Lingyun Chen, and Xiaobei Zhan, and Wenshui Xia
January 2012, Journal of nanobiotechnology,
Wanwen Chen, and Hao Cheng, and Lingyun Chen, and Xiaobei Zhan, and Wenshui Xia
November 2011, Carbohydrate research,
Wanwen Chen, and Hao Cheng, and Lingyun Chen, and Xiaobei Zhan, and Wenshui Xia
February 2017, Carbohydrate polymers,
Wanwen Chen, and Hao Cheng, and Lingyun Chen, and Xiaobei Zhan, and Wenshui Xia
August 2015, International journal of biological macromolecules,
Wanwen Chen, and Hao Cheng, and Lingyun Chen, and Xiaobei Zhan, and Wenshui Xia
April 2017, Colloids and surfaces. B, Biointerfaces,
Wanwen Chen, and Hao Cheng, and Lingyun Chen, and Xiaobei Zhan, and Wenshui Xia
April 2016, Journal of biomaterials applications,
Copied contents to your clipboard!