Synchrotron x-ray diffraction studies of actin structure during polymerization. 1987

P Matsudaira, and J Bordas, and M H Koch

Synchrotron x-ray diffraction was used to identify the oligomers that formed during the earliest stages of actin polymerization. Solution diffraction patterns from G-actin (monomer) and from F-actin (polymer) contain information about the size and shape of actin monomers and the length, width, and subunit organization of filaments. Comparison of patterns collected during polymerization reveals an increase in scatter at spacings greater than 9.0 nm; formation of scattering bands at 5.4,4.9, and 3.4 nm; formation of a scattering minimum at 6.5 nm; and the presence of an isosbestic point at 9.0 nm. These scattering bands arise from the formation of, and organization of subunits in, filaments. At various actin concentrations (0.37-5 mg/ml), the change in scatter in these regions follows simple exponential kinetics with no detectable lag. Our analysis of the x-ray patterns shows that by 0.4 sec after mixing, most of the actin has formed dimers, which then rapidly incorporate into oligomers. At 4 mg/ml the early oligomers increase in length to greater than 30.0 nm within 10 sec. These results suggest that under our conditions actin molecules condense into filaments without the rate-limiting formation of nuclei.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010315 Particle Accelerators Devices which accelerate electrically charged atomic or subatomic particles, such as electrons, protons or ions, to high velocities so they have high kinetic energy. Betatrons,Linear Accelerators,Accelerator, Linear,Accelerator, Particle,Accelerators, Linear,Accelerators, Particle,Betatron,Linear Accelerator,Particle Accelerator
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014961 X-Ray Diffraction The scattering of x-rays by matter, especially crystals, with accompanying variation in intensity due to interference effects. Analysis of the crystal structure of materials is performed by passing x-rays through them and registering the diffraction image of the rays (CRYSTALLOGRAPHY, X-RAY). (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Xray Diffraction,Diffraction, X-Ray,Diffraction, Xray,Diffractions, X-Ray,Diffractions, Xray,X Ray Diffraction,X-Ray Diffractions,Xray Diffractions
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular

Related Publications

P Matsudaira, and J Bordas, and M H Koch
April 1992, Investigative ophthalmology & visual science,
P Matsudaira, and J Bordas, and M H Koch
October 1997, Journal of molecular biology,
P Matsudaira, and J Bordas, and M H Koch
December 1977, Journal of molecular biology,
P Matsudaira, and J Bordas, and M H Koch
January 2005, Methods in molecular biology (Clifton, N.J.),
P Matsudaira, and J Bordas, and M H Koch
July 2000, Cellular and molecular biology (Noisy-le-Grand, France),
P Matsudaira, and J Bordas, and M H Koch
January 1984, Connective tissue research,
P Matsudaira, and J Bordas, and M H Koch
March 2002, Acta crystallographica. Section D, Biological crystallography,
P Matsudaira, and J Bordas, and M H Koch
February 1995, Quarterly reviews of biophysics,
P Matsudaira, and J Bordas, and M H Koch
December 2021, Acta crystallographica. Section C, Structural chemistry,
Copied contents to your clipboard!