Expression of size-selected mRNA encoding the intestinal Na/glucose cotransporter in Xenopus laevis oocytes. 1987

M A Hediger, and T Ikeda, and M Coady, and C B Gundersen, and E M Wright

The expression of the rabbit intestinal brushborder Na/glucose cotransporter has been studied in Xenopus oocytes. Poly(A)+ RNA isolated from the intestinal mucosa was injected into oocytes, and the expression of the transporter in the oocyte plasma membrane was assayed by measuring the Na-dependent phlorizin-sensitive uptake of methyl alpha-D-[14C]glucopyranoside (MeGlc). Expression of the glucose carrier was detected 3-7 days after mRNA injection, and the rate of glucose transport was proportional to the amount of mRNA injected. mRNA (50 ng) increased the maximum velocity (Vmax) of MeGlc uptake by as much as 10-fold over background. The total mRNA was fractionated by preparative agarose gel electrophoresis and each fraction was assayed for its ability to induce transport activity. The mRNA encoding the Na/glucose cotransporter was found in a single fraction of approximately 2.3 kilobases (kb), which contained 3% of the total mRNA. A similar mRNA fraction (2.0-2.6 kb) isolated from colon did not induce expression of this transporter. In vitro translation of the fractionated intestinal mRNA showed enhanced synthesis of two protein bands at 57 and 63 kDa. The mRNA encoding the cotransporter is smaller (2.3 kb) than that (2.6-2.9 kb) encoding the 55-kDa facilitated glucose carrier in human hepatoma cells and rat brain.

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D007421 Intestine, Small The portion of the GASTROINTESTINAL TRACT between the PYLORUS of the STOMACH and the ILEOCECAL VALVE of the LARGE INTESTINE. It is divisible into three portions: the DUODENUM, the JEJUNUM, and the ILEUM. Small Intestine,Intestines, Small,Small Intestines
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009004 Monosaccharide Transport Proteins A large group of membrane transport proteins that shuttle MONOSACCHARIDES across CELL MEMBRANES. Hexose Transport Proteins,Band 4.5 Preactin,Erythrocyte Band 4.5 Protein,Glucose Transport-Inducing Protein,Hexose Transporter,4.5 Preactin, Band,Glucose Transport Inducing Protein,Preactin, Band 4.5,Proteins, Monosaccharide Transport,Transport Proteins, Hexose,Transport Proteins, Monosaccharide,Transport-Inducing Protein, Glucose
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations

Related Publications

M A Hediger, and T Ikeda, and M Coady, and C B Gundersen, and E M Wright
October 1999, The Journal of physiology,
M A Hediger, and T Ikeda, and M Coady, and C B Gundersen, and E M Wright
June 1996, The Journal of biological chemistry,
M A Hediger, and T Ikeda, and M Coady, and C B Gundersen, and E M Wright
March 1992, Journal of neurochemistry,
M A Hediger, and T Ikeda, and M Coady, and C B Gundersen, and E M Wright
December 1994, Pflugers Archiv : European journal of physiology,
M A Hediger, and T Ikeda, and M Coady, and C B Gundersen, and E M Wright
June 1990, Biophysical journal,
M A Hediger, and T Ikeda, and M Coady, and C B Gundersen, and E M Wright
April 1990, The Journal of biological chemistry,
M A Hediger, and T Ikeda, and M Coady, and C B Gundersen, and E M Wright
September 1998, Journal of physiology and biochemistry,
M A Hediger, and T Ikeda, and M Coady, and C B Gundersen, and E M Wright
May 2002, The Journal of membrane biology,
M A Hediger, and T Ikeda, and M Coady, and C B Gundersen, and E M Wright
March 2005, Journal of biochemistry and molecular biology,
M A Hediger, and T Ikeda, and M Coady, and C B Gundersen, and E M Wright
September 1991, The Biochemical journal,
Copied contents to your clipboard!