Regulation of gene expression by ethylene during Lycopersicon esculentum (tomato) fruit development. 1987

J E Lincoln, and S Cordes, and E Read, and R L Fischer

We have investigated the regulation of gene expression by the plant hormone ethylene by cloning mRNAs that accumulate in unripe tomato fruit (Lycopersicon esculentum) exposed to exogenous ethylene. The response to exogenous ethylene is rapid; within 30-120 min we detect an increase in the cloned mRNA concentrations. DNA sequence analysis indicates that one of the ethylene-inducible genes is related to a gene encoding wound-inducible proteinase inhibitor I. We have measured ethylene production during fruit development and detect low basal levels in unripe fruit and much higher levels in ripening fruit. Blot hybridization experiments show that expression of the cloned genes is developmentally regulated by ethylene during fruit ripening: the mRNAs produced by these genes are more abundant in ripe fruit than in unripe fruit, and this mRNA accumulation is repressed by a competitive inhibitor of ethylene action, norbornadiene. However, during fruit development some of the cloned mRNAs begin to accumulate when ethylene production is at a basal level, whereas other mRNAs begin to accumulate later when the endogenous ethylene concentration increases, suggesting that gene expression during fruit development can be activated by ethylene in two ways. In some cases gene expression is primarily activated by an increase in sensitivity to basal ethylene levels, whereas in other cases it may be regulated by an increase in ethylene concentration.

UI MeSH Term Description Entries
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D011480 Protease Inhibitors Compounds which inhibit or antagonize biosynthesis or actions of proteases (ENDOPEPTIDASES). Antiprotease,Endopeptidase Inhibitor,Endopeptidase Inhibitors,Peptidase Inhibitor,Peptidase Inhibitors,Peptide Hydrolase Inhibitor,Peptide Hydrolase Inhibitors,Peptide Peptidohydrolase Inhibitor,Peptide Peptidohydrolase Inhibitors,Protease Antagonist,Protease Antagonists,Antiproteases,Protease Inhibitor,Antagonist, Protease,Antagonists, Protease,Hydrolase Inhibitor, Peptide,Hydrolase Inhibitors, Peptide,Inhibitor, Endopeptidase,Inhibitor, Peptidase,Inhibitor, Peptide Hydrolase,Inhibitor, Peptide Peptidohydrolase,Inhibitor, Protease,Inhibitors, Endopeptidase,Inhibitors, Peptidase,Inhibitors, Peptide Hydrolase,Inhibitors, Peptide Peptidohydrolase,Inhibitors, Protease,Peptidohydrolase Inhibitor, Peptide,Peptidohydrolase Inhibitors, Peptide
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005030 Ethylenes Derivatives of ethylene, a simple organic gas of biological origin with many industrial and biological use.
D005638 Fruit The fleshy or dry ripened ovary of a plant, enclosing the seed or seeds. Berries,Legume Pod,Plant Aril,Plant Capsule,Aril, Plant,Arils, Plant,Berry,Capsule, Plant,Capsules, Plant,Fruits,Legume Pods,Plant Arils,Plant Capsules,Pod, Legume,Pods, Legume
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

J E Lincoln, and S Cordes, and E Read, and R L Fischer
October 1988, Plant physiology,
J E Lincoln, and S Cordes, and E Read, and R L Fischer
November 1993, Plant physiology,
J E Lincoln, and S Cordes, and E Read, and R L Fischer
November 1987, Plant physiology,
J E Lincoln, and S Cordes, and E Read, and R L Fischer
July 1993, Plant physiology,
J E Lincoln, and S Cordes, and E Read, and R L Fischer
April 2007, DNA sequence : the journal of DNA sequencing and mapping,
J E Lincoln, and S Cordes, and E Read, and R L Fischer
July 1993, Plant physiology,
J E Lincoln, and S Cordes, and E Read, and R L Fischer
September 2005, Functional plant biology : FPB,
J E Lincoln, and S Cordes, and E Read, and R L Fischer
January 1982, Methods in enzymology,
J E Lincoln, and S Cordes, and E Read, and R L Fischer
December 1992, Plant physiology,
J E Lincoln, and S Cordes, and E Read, and R L Fischer
April 2004, Physiologia plantarum,
Copied contents to your clipboard!