Correlating Skeletal Muscle Output Force and Intramuscular Pressure Via a Three-Dimensional Finite Element Muscle Model. 2022

Ibrahim El Bojairami, and Mark Driscoll
Department of Mechanical Engineering, Musculoskeletal Biomechanics Research Laboratory, McGill University, Macdonald Engineering Building Office #163, 817 Sherbrooke Street West, Montreal, QC H3A 0C3, Canada.

The inclusion of muscle pressure in muscle models may have important implications in biomechanics. This notion builds from the known correlation between muscle contractile force and internal pressure. However, this relation is often omitted in numerical models leveraged to study biomechanics. Thus, the purpose of this study was to develop and validate a method of modeling muscles, via finite elements, inclusive of the correlation between muscle contractile force and intramuscular pressure. A magnetic resonance imaging (MRI)-scanned tibialis anterior muscle was modeled via a simple, yet easily scalable, mixed shell and pressure finite element model. Then a validation study was conducted on intramuscular pressure, resulting from applied muscle contractile force, through leveraging special fluid elements type. The fluid-structure-based model and adopted methods exhibited muscle forces and intramuscular pressure that were highly linearly correlated. Indirect validation was achieved with a maximum discrepancy of 7.25%. Furthermore, force-length curves followed a trend similar to documented conventional muscle data, which added to the model's validity. Mesh, material properties, and tendon stiffness sensitivity studies supported the model's robustness. This study has introduced a novel three-dimensional finite element modeling method that respects the physiological force and intramuscular pressure relationship. Although similar models have been previously explored, their complex physiological representation and time-consuming solvers make their scalability and real-time implementation questionable. Thus, the developed model may address such limitations while improving the realism of volumetric finite element models inclusive of muscle contribution.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D001696 Biomechanical Phenomena The properties, processes, and behavior of biological systems under the action of mechanical forces. Biomechanics,Kinematics,Biomechanic Phenomena,Mechanobiological Phenomena,Biomechanic,Biomechanic Phenomenas,Phenomena, Biomechanic,Phenomena, Biomechanical,Phenomena, Mechanobiological,Phenomenas, Biomechanic
D018482 Muscle, Skeletal A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles. Anterior Tibial Muscle,Gastrocnemius Muscle,Muscle, Voluntary,Plantaris Muscle,Skeletal Muscle,Soleus Muscle,Muscle, Anterior Tibial,Muscle, Gastrocnemius,Muscle, Plantaris,Muscle, Soleus,Muscles, Skeletal,Muscles, Voluntary,Skeletal Muscles,Tibial Muscle, Anterior,Voluntary Muscle,Voluntary Muscles
D020342 Finite Element Analysis A computer based method of simulating or analyzing the behavior of structures or components. Analysis, Finite Element,Analyses, Finite Element,Element Analyses, Finite,Element Analysis, Finite,Finite Element Analyses

Related Publications

Ibrahim El Bojairami, and Mark Driscoll
November 2002, Physics in medicine and biology,
Ibrahim El Bojairami, and Mark Driscoll
January 1988, Operative dentistry,
Ibrahim El Bojairami, and Mark Driscoll
January 1984, Journal of orthopaedic research : official publication of the Orthopaedic Research Society,
Ibrahim El Bojairami, and Mark Driscoll
February 2009, Nanotechnology,
Ibrahim El Bojairami, and Mark Driscoll
June 2017, Biomechanics and modeling in mechanobiology,
Ibrahim El Bojairami, and Mark Driscoll
August 2002, Journal of biomechanical engineering,
Ibrahim El Bojairami, and Mark Driscoll
October 2021, Forces in mechanics,
Ibrahim El Bojairami, and Mark Driscoll
March 2008, The Cleft palate-craniofacial journal : official publication of the American Cleft Palate-Craniofacial Association,
Copied contents to your clipboard!