Amplified ribosomal spacer sequence: structure and evolutionary origin. 1987

R Kominami, and M Muramatsu

A novel class of repeated sequences consisting of tandem arrays of ribosomal spacer sequence has been discovered in a mouse genome. Comparison to normal ribosomal DNA reveals that one repeat unit consists of two separate parts of spacer sequence. This amplified spacer sequence has a pseudogene-like structure but is distinct from the previously reported pseudogenes and orphons in regions lacking coding sequences. So far the amplified spacer sequence has been found only in the BALB/c mouse genome but not in ten other laboratory strains and several wild-type mouse stocks. Surprisingly, a part of the amplified spacer sequence unit had a higher homology to the corresponding part of the ribosomal DNA sequence of Mus musculus molossinus, a Japanese wild-type mouse, than to the corresponding part of the rDNA of the BALB/c mouse. These findings suggest that the amplified spacer sequence of the BALB/c mouse might have partly originated in M. m. molossinus or in a related subspecies.

UI MeSH Term Description Entries
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D004274 DNA, Recombinant Biologically active DNA which has been formed by the in vitro joining of segments of DNA from different sources. It includes the recombination joint or edge of a heteroduplex region where two recombining DNA molecules are connected. Genes, Spliced,Recombinant DNA,Spliced Gene,Recombinant DNA Research,Recombination Joint,DNA Research, Recombinant,Gene, Spliced,Joint, Recombination,Research, Recombinant DNA,Spliced Genes
D004275 DNA, Ribosomal DNA sequences encoding RIBOSOMAL RNA and the segments of DNA separating the individual ribosomal RNA genes, referred to as RIBOSOMAL SPACER DNA. Ribosomal DNA,rDNA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012335 RNA, Ribosomal The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed) Ribosomal RNA,15S RNA,RNA, 15S
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

R Kominami, and M Muramatsu
November 1992, Nucleic acids research,
R Kominami, and M Muramatsu
July 1974, Proceedings of the National Academy of Sciences of the United States of America,
R Kominami, and M Muramatsu
March 1976, Nature,
R Kominami, and M Muramatsu
December 1982, Nucleic acids research,
R Kominami, and M Muramatsu
April 2005, Molecular phylogenetics and evolution,
R Kominami, and M Muramatsu
March 1986, The American biology teacher,
R Kominami, and M Muramatsu
November 1978, Biochemistry,
R Kominami, and M Muramatsu
February 1985, Nucleic acids research,
R Kominami, and M Muramatsu
June 1986, Nucleic acids research,
Copied contents to your clipboard!