Purification of subunits of Escherichia coli DNA gyrase and reconstitution of enzymatic activity. 1978

N P Higgins, and C L Peebles, and A Sugino, and N R Cozzarelli

Extensively purified DNA gyrase from Escherichia coli is inhibited by nalidixic acid and by novobiocin. The enzyme is composed of two subunits, A and B, which were purified as separate components. Subunit A is the product of the gene controlling sensitivity to nalidixic acid (nalA) because: (i) the electrophoretic mobility of subunit A in the presence of sodium dodecyl sulfate is identical to that of the 105,000-dalton nalA gene product; (ii) mutants that are resistant to nalidixic acid (nalA(r)) produce a drug-resistant subunit A; and (iii) wild-type subunit A confers drug sensitivity to in vitro synthesis of varphiX174 DNA directed by nalA(r) mutants. Subunit B contains a 95,000-dalton polypeptide and is controlled by the gene specifying sensitivity to novobiocin (cou) because cou(r) mutants produce a novobiocin-resistant subunit B and novobiocin-resitant gyrase is made drug sensitive by wild-type subunit B. Subunits A and B associate, so that gyrase was also purified as a complex containing 105,000- and 95,000-dalton polypeptides. This enzyme and gyrase reconstructed from subunits have the same drug sensitivity, K(m) for ATP, and catalytic properties. The same ratio of subunits gives efficient reconstitution of the reactions intrinsic to DNA gyrase, including catalysis of supercoiling of closed duplex DNA, relaxation of supercoiled DNA in the absence of ATP, and site-specific cleavage of DNA induced by sodium dodecyl sulfate.

UI MeSH Term Description Entries
D009268 Nalidixic Acid A synthetic 1,8-naphthyridine antimicrobial agent with a limited bacteriocidal spectrum. It is an inhibitor of the A subunit of bacterial DNA GYRASE. Nalidixin,Nalidixate Sodium,Nalidixate Sodium Anhydrous,Nevigramon,Sodium Nalidixic Acid, Anhydrous,Sodium Nalidixic Acid, Monohydrate,Acid, Nalidixic,Anhydrous, Nalidixate Sodium,Sodium Anhydrous, Nalidixate,Sodium, Nalidixate
D009675 Novobiocin An antibiotic compound derived from Streptomyces niveus. It has a chemical structure similar to coumarin. Novobiocin binds to DNA gyrase, and blocks adenosine triphosphatase (ATPase) activity. (From Reynolds, Martindale The Extra Pharmacopoeia, 30th ed, p189) Crystallinic Acid,Streptonivicin,Novobiocin Calcium,Novobiocin Sodium,Novobiocin, Monosodium Salt,Calcium, Novobiocin,Monosodium Salt Novobiocin,Sodium, Novobiocin
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004278 DNA, Superhelical Circular duplex DNA isolated from viruses, bacteria and mitochondria in supercoiled or supertwisted form. This superhelical DNA is endowed with free energy. During transcription, the magnitude of RNA initiation is proportional to the DNA superhelicity. DNA, Supercoiled,DNA, Supertwisted,Supercoiled DNA,Superhelical DNA,Supertwisted DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular

Related Publications

N P Higgins, and C L Peebles, and A Sugino, and N R Cozzarelli
July 1982, Journal of bacteriology,
N P Higgins, and C L Peebles, and A Sugino, and N R Cozzarelli
January 1984, Advances in experimental medicine and biology,
N P Higgins, and C L Peebles, and A Sugino, and N R Cozzarelli
January 1983, Methods in enzymology,
N P Higgins, and C L Peebles, and A Sugino, and N R Cozzarelli
December 1996, The Journal of biological chemistry,
N P Higgins, and C L Peebles, and A Sugino, and N R Cozzarelli
October 1997, Biochemical and biophysical research communications,
N P Higgins, and C L Peebles, and A Sugino, and N R Cozzarelli
July 1984, The Journal of biological chemistry,
N P Higgins, and C L Peebles, and A Sugino, and N R Cozzarelli
March 1979, The Journal of biological chemistry,
N P Higgins, and C L Peebles, and A Sugino, and N R Cozzarelli
November 1986, Antimicrobial agents and chemotherapy,
N P Higgins, and C L Peebles, and A Sugino, and N R Cozzarelli
June 1999, Seikagaku. The Journal of Japanese Biochemical Society,
N P Higgins, and C L Peebles, and A Sugino, and N R Cozzarelli
January 2019, Nucleic acids research,
Copied contents to your clipboard!