RASA4 inhibits the HIFα signaling pathway to suppress proliferation of cervical cancer cells. 2021

Junying Chen, and Jinbing Huang, and Qiaoqiao Huang, and Ji Li, and Erling Chen, and Wensheng Xu
Department of Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning City, China.

RAS p21 protein activator 4 (RASA4) has been recognized as a Ca2+-promoted Ras-MAPK pathway suppressor that inhibits tumor growth. However, the role of RASA4 in cervical squamous cell carcinoma (CESC) remains unclear. The mRNA levels of RASA4 were analyzed using the GEO and GEPIA databases. Kaplan-Meier analysis and ROC analyses were conducted to determine the prognostic and diagnostic values for patients from the TCGA-CSCE cohort. The CCK8 and colony assays were performed to assess the impact of RASA4 ectopic expression and gene inactivation on tumor cell proliferation. In vivo experiments were performed. Luciferase reporter assays and LW6 (a HIFα inhibitor) were employed to verify the regulatory relationship between RASA4 and the HIFa signaling pathway. The GEPIA and GEO database analysis demonstrated poorly expressed RASA4 in the CESC tissues relative to that in the noncancerous tissues. Based on the TCGA database, poorly expressed RASA4 signified high prognostic and diagnostic values. Ectopically expressed RASA4 weakened the proliferative potential of HeLa cells, whereas RASA4 genetic inactivation produced the opposite impact in the HeLa and C-33A cells. The promoting effect of RASA4 deficiency on tumourigenesis was also recorded in vivo. Subsequently, RASA4 negatively regulated the HIFα-driven luciferase activities and weakened the expression of survivin. Meanwhile, LW6 treatment abrogated the increased proliferation of HeLa cells, as well as the increased expression of survivin by RASA4 depletion. Our findings indicated that RASA4 can inhibit the proliferation of cervical cancer cells by inactivating the HIFα signaling pathway, suggesting novel prospects for targeted therapy against CESC.

UI MeSH Term Description Entries
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D011379 Prognosis A prediction of the probable outcome of a disease based on a individual's condition and the usual course of the disease as seen in similar situations. Prognostic Factor,Prognostic Factors,Factor, Prognostic,Factors, Prognostic,Prognoses
D002294 Carcinoma, Squamous Cell A carcinoma derived from stratified SQUAMOUS EPITHELIAL CELLS. It may also occur in sites where glandular or columnar epithelium is normally present. (From Stedman, 25th ed) Carcinoma, Epidermoid,Carcinoma, Planocellular,Carcinoma, Squamous,Squamous Cell Carcinoma,Carcinomas, Epidermoid,Carcinomas, Planocellular,Carcinomas, Squamous,Carcinomas, Squamous Cell,Epidermoid Carcinoma,Epidermoid Carcinomas,Planocellular Carcinoma,Planocellular Carcinomas,Squamous Carcinoma,Squamous Carcinomas,Squamous Cell Carcinomas
D002583 Uterine Cervical Neoplasms Tumors or cancer of the UTERINE CERVIX. Cancer of Cervix,Cancer of the Cervix,Cancer of the Uterine Cervix,Cervical Cancer,Cervical Neoplasms,Cervix Cancer,Cervix Neoplasms,Neoplasms, Cervical,Neoplasms, Cervix,Uterine Cervical Cancer,Cancer, Cervical,Cancer, Cervix,Cancer, Uterine Cervical,Cervical Cancer, Uterine,Cervical Cancers,Cervical Neoplasm,Cervical Neoplasm, Uterine,Cervix Neoplasm,Neoplasm, Cervix,Neoplasm, Uterine Cervical,Uterine Cervical Cancers,Uterine Cervical Neoplasm
D005260 Female Females
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

Junying Chen, and Jinbing Huang, and Qiaoqiao Huang, and Ji Li, and Erling Chen, and Wensheng Xu
January 2017, Theranostics,
Junying Chen, and Jinbing Huang, and Qiaoqiao Huang, and Ji Li, and Erling Chen, and Wensheng Xu
September 2023, Cancer research,
Junying Chen, and Jinbing Huang, and Qiaoqiao Huang, and Ji Li, and Erling Chen, and Wensheng Xu
January 2021, Journal of oncology,
Junying Chen, and Jinbing Huang, and Qiaoqiao Huang, and Ji Li, and Erling Chen, and Wensheng Xu
September 2017, Oncotarget,
Junying Chen, and Jinbing Huang, and Qiaoqiao Huang, and Ji Li, and Erling Chen, and Wensheng Xu
April 2019, Pathology, research and practice,
Junying Chen, and Jinbing Huang, and Qiaoqiao Huang, and Ji Li, and Erling Chen, and Wensheng Xu
January 2015, Journal of Cancer,
Junying Chen, and Jinbing Huang, and Qiaoqiao Huang, and Ji Li, and Erling Chen, and Wensheng Xu
September 2015, International journal of gynecological cancer : official journal of the International Gynecological Cancer Society,
Junying Chen, and Jinbing Huang, and Qiaoqiao Huang, and Ji Li, and Erling Chen, and Wensheng Xu
February 2022, Oncology letters,
Junying Chen, and Jinbing Huang, and Qiaoqiao Huang, and Ji Li, and Erling Chen, and Wensheng Xu
May 2018, Oncology research,
Junying Chen, and Jinbing Huang, and Qiaoqiao Huang, and Ji Li, and Erling Chen, and Wensheng Xu
January 2020, OncoTargets and therapy,
Copied contents to your clipboard!