Hepatic processing of transforming growth factor beta in the rat. Uptake, metabolism, and biliary excretion. 1987

R J Coffey, and L J Kost, and R M Lyons, and H L Moses, and N F LaRusso

Transforming growth factor beta (TGF beta), a recently discovered polypeptide, modulates growth of normal and neoplastic cells. Since little is known concerning in vivo disposition of TGF beta, we performed studies to examine the hepatic processing of biologically active 125I-TGF beta in the rat. After intravenous injection, 125I-TGF beta disappeared from the plasma with an initial t1/2 of 2.2 min; partial hepatectomy delayed the plasma disappearance of 125I-TGF beta by 80%. 60 min after intrafemoral injection, 63% of the recovered label was present in liver and/or bile; by 90 min, most of the label removed by the liver (83%) had been slowly excreted into bile. Nearly all the label in bile (96%) was soluble in trichloracetic acid and not immunoprecipitable by specific antiserum. Colchicine and vinblastine inhibited cumulative biliary excretion of label by 28 and 37%, respectively; chloroquine and leupeptin each increased the amount of label in bile that was precipitable by trichloracetic acid and that coeluted with authentic 125I-TGF beta on molecular sieve chromatography. There was efficient first-pass hepatic extraction of 125I-TGF beta (36%) in the isolated perfused rat liver, which was inhibited by unlabeled TGF beta (but not by epidermal growth factor, EGF) and by lectins in a dose-dependent manner; prolonged fasting also decreased clearance (26%). After fractionation of liver by differential or isopycnic centrifugation, radiolabel codistributed with marker enzymes for lysosomes. The results indicate rapid, extensive, inhibitable, and organ-selective extraction of TGF beta by the liver. After extraction, TGF beta undergoes efficient transhepatic transport, extensive intracellular metabolism, and slow but complete biliary excretion of its metabolites. Liver fractionation studies and pharmacologic manipulations suggest that these processes are associated with organelles that include microtubules and lysosomes. The data suggest that the liver is a major target tissue or site of metabolism for biologically active TGF beta.

UI MeSH Term Description Entries
D007976 Leupeptins A group of acylated oligopeptides produced by Actinomycetes that function as protease inhibitors. They have been known to inhibit to varying degrees trypsin, plasmin, KALLIKREINS, papain and the cathepsins.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D009940 Organoids An organization of cells into an organ-like structure. Organoids can be generated in culture, e.g., self-organized three-dimensional tissue structures derived from STEM CELLS (see MICROPHYSIOLOGICAL SYSTEMS). They are also found in certain NEOPLASMS. Organoid
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D002738 Chloroquine The prototypical antimalarial agent with a mechanism that is not well understood. It has also been used to treat rheumatoid arthritis, systemic lupus erythematosus, and in the systemic therapy of amebic liver abscesses. Aralen,Arechine,Arequin,Chingamin,Chlorochin,Chloroquine Sulfate,Chloroquine Sulphate,Khingamin,Nivaquine,Sulfate, Chloroquine,Sulphate, Chloroquine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001646 Bile An emulsifying agent produced in the LIVER and secreted into the DUODENUM. Its composition includes BILE ACIDS AND SALTS; CHOLESTEROL; and ELECTROLYTES. It aids DIGESTION of fats in the duodenum. Biliary Sludge,Sludge, Biliary
D015291 Transforming Growth Factors Hormonally active polypeptides that can induce the transformed phenotype when added to normal, non-transformed cells. They have been found in culture fluids from retrovirally transformed cells and in tumor-derived cells as well as in non-neoplastic sources. Their transforming activities are due to the simultaneous action of two otherwise unrelated factors, TRANSFORMING GROWTH FACTOR ALPHA and TRANSFORMING GROWTH FACTOR BETA. Transforming Growth Factor,Factor, Transforming Growth,Factors, Transforming Growth,Growth Factor, Transforming,Growth Factors, Transforming
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

R J Coffey, and L J Kost, and R M Lyons, and H L Moses, and N F LaRusso
January 1974, Drug metabolism and disposition: the biological fate of chemicals,
R J Coffey, and L J Kost, and R M Lyons, and H L Moses, and N F LaRusso
January 1988, Agents and actions. Supplements,
R J Coffey, and L J Kost, and R M Lyons, and H L Moses, and N F LaRusso
November 1973, The American journal of physiology,
R J Coffey, and L J Kost, and R M Lyons, and H L Moses, and N F LaRusso
July 1992, Hepatology (Baltimore, Md.),
R J Coffey, and L J Kost, and R M Lyons, and H L Moses, and N F LaRusso
March 1995, Kidney international,
R J Coffey, and L J Kost, and R M Lyons, and H L Moses, and N F LaRusso
February 2005, Toxicological sciences : an official journal of the Society of Toxicology,
R J Coffey, and L J Kost, and R M Lyons, and H L Moses, and N F LaRusso
March 1986, The American journal of physiology,
R J Coffey, and L J Kost, and R M Lyons, and H L Moses, and N F LaRusso
January 1978, Biochemical pharmacology,
R J Coffey, and L J Kost, and R M Lyons, and H L Moses, and N F LaRusso
December 1973, The American journal of physiology,
R J Coffey, and L J Kost, and R M Lyons, and H L Moses, and N F LaRusso
March 1998, Renal failure,
Copied contents to your clipboard!