Alteration of glycolipids in ras-transfected NIH 3T3 cells. 1987

G R Matyas, and S A Aaronson, and R O Brady, and P H Fishman

Glycosphingolipid alterations upon viral transformation are well documented. Transformation of mouse 3T3 cells with murine sarcoma viruses results in marked decreases in the levels of gangliosides GM1 and GD1a and an increase in gangliotriaosylceramide. The transforming oncogenes of these viruses have been identified as members of the ras gene family. We analyzed NIH 3T3 cells transfected with human H-, K- and N-ras oncogenes for their glycolipid composition and expression of cell surface gangliosides. Using conventional thin-layer chromatographic analysis, we found that the level of GM3 was increased and that of GD1a was slightly decreased or unchanged, and GM1 was present but not in quantifiable levels. Cell surface levels of GM1 were determined by 125I-labeled cholera toxin binding to intact cells. GD1a was determined by cholera toxin binding to cells treated with sialidase prior to toxin binding. All ras-transfected cells had decreased levels of surface GM1 and GD1a as compared to logarithmically growing normal NIH 3T3 cells. Levels of GM1 and, to a lesser extent, GD1a increased as the latter cells became confluent. Using a monoclonal antibody assay, we found that gangliotriaosylceramide was present in all ras-transfected cells studied but not in logarithmically growing untransfected cells. Interestingly, gangliotriaosylceramide appeared when the latter cells became confluent. These results indicated that ras oncogenes derived from human tumors are capable of inducing alterations in glycolipid composition.

UI MeSH Term Description Entries
D009857 Oncogenes Genes whose gain-of-function alterations lead to NEOPLASTIC CELL TRANSFORMATION. They include, for example, genes for activators or stimulators of CELL PROLIFERATION such as growth factors, growth factor receptors, protein kinases, signal transducers, nuclear phosphoproteins, and transcription factors. A prefix of "v-" before oncogene symbols indicates oncogenes captured and transmitted by RETROVIRUSES; the prefix "c-" before the gene symbol of an oncogene indicates it is the cellular homolog (PROTO-ONCOGENES) of a v-oncogene. Transforming Genes,Oncogene,Transforming Gene,Gene, Transforming,Genes, Transforming
D011519 Proto-Oncogenes Normal cellular genes homologous to viral oncogenes. The products of proto-oncogenes are important regulators of biological processes and appear to be involved in the events that serve to maintain the ordered procession through the cell cycle. Proto-oncogenes have names of the form c-onc. Proto-Oncogene,Proto Oncogene,Proto Oncogenes
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D005677 G(M1) Ganglioside A specific monosialoganglioside that accumulates abnormally within the nervous system due to a deficiency of GM1-b-galactosidase, resulting in GM1 gangliosidosis. GM1 Ganglioside,Monosialosyl Tetraglycosyl Ceramide,GM1a Monosialoganglioside,Ceramide, Monosialosyl Tetraglycosyl,Ganglioside, GM1,Monosialoganglioside, GM1a,Tetraglycosyl Ceramide, Monosialosyl
D005732 Gangliosides A subclass of ACIDIC GLYCOSPHINGOLIPIDS. They contain one or more sialic acid (N-ACETYLNEURAMINIC ACID) residues. Using the Svennerholm system of abbrevations, gangliosides are designated G for ganglioside, plus subscript M, D, or T for mono-, di-, or trisialo, respectively, the subscript letter being followed by a subscript arabic numeral to indicated sequence of migration in thin-layer chromatograms. (From Oxford Dictionary of Biochemistry and Molecular Biology, 1997) Ganglioside,Sialoglycosphingolipids
D006017 Glycolipids Any compound containing one or more monosaccharide residues bound by a glycosidic linkage to a hydrophobic moiety such as an acylglycerol (see GLYCERIDES), a sphingoid, a ceramide (CERAMIDES) (N-acylsphingoid) or a prenyl phosphate. (From IUPAC's webpage) Glycolipid
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections

Related Publications

G R Matyas, and S A Aaronson, and R O Brady, and P H Fishman
June 1988, Cancer research,
G R Matyas, and S A Aaronson, and R O Brady, and P H Fishman
January 1989, Cellular signalling,
G R Matyas, and S A Aaronson, and R O Brady, and P H Fishman
June 1985, Proceedings of the National Academy of Sciences of the United States of America,
G R Matyas, and S A Aaronson, and R O Brady, and P H Fishman
January 1983, The EMBO journal,
G R Matyas, and S A Aaronson, and R O Brady, and P H Fishman
October 1994, Molecular and cellular biochemistry,
G R Matyas, and S A Aaronson, and R O Brady, and P H Fishman
January 1986, Gene,
G R Matyas, and S A Aaronson, and R O Brady, and P H Fishman
April 1989, The American journal of physiology,
G R Matyas, and S A Aaronson, and R O Brady, and P H Fishman
July 1992, Science (New York, N.Y.),
G R Matyas, and S A Aaronson, and R O Brady, and P H Fishman
January 1990, Proceedings of the Western Pharmacology Society,
G R Matyas, and S A Aaronson, and R O Brady, and P H Fishman
October 1992, Experimental cell research,
Copied contents to your clipboard!