The effects of deletions in the leader sequence of cat-86, a chloramphenicol-resistance gene isolated from Bacillus pumilus. 1987

C R Harwood, and D E Bell, and A K Winston
Department of Microbiology, Medical School, Newcastle upon Tyne, U.K.

The cat-86 gene of Bacillus pumilus, specifying a Cm-inducible CAT enzyme, was cloned previously into B. subtilis on plasmid pUB110. Various lines of evidence suggest that control of expression of this gene is at the level of translation and involves inverted complementary repeat sequences 5' to the initiation codon. A series of deletions have been generated in this region and their effects on the induction of cat-86 observed in B. subtilis, Escherichia coli and a number of ribosomal mutant strains of B. subtilis. The results indicate that the inverted complementary repeat sequences, which are capable of forming a stable stem-loop structure in the mRNA (delta G = -24.4 kcal/mol), form a barrier to translation in E. coli and B. subtilis.

UI MeSH Term Description Entries
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D002701 Chloramphenicol An antibiotic first isolated from cultures of Streptomyces venequelae in 1947 but now produced synthetically. It has a relatively simple structure and was the first broad-spectrum antibiotic to be discovered. It acts by interfering with bacterial protein synthesis and is mainly bacteriostatic. (From Martindale, The Extra Pharmacopoeia, 29th ed, p106) Cloranfenicol,Kloramfenikol,Levomycetin,Amphenicol,Amphenicols,Chlornitromycin,Chlorocid,Chloromycetin,Detreomycin,Ophthochlor,Syntomycin
D002872 Chromosome Deletion Actual loss of portion of a chromosome. Monosomy, Partial,Partial Monosomy,Deletion, Chromosome,Deletions, Chromosome,Monosomies, Partial,Partial Monosomies
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D000123 Acetyltransferases Enzymes catalyzing the transfer of an acetyl group, usually from acetyl coenzyme A, to another compound. EC 2.3.1. Acetyltransferase
D001407 Bacillus A genus of BACILLACEAE that are spore-forming, rod-shaped cells. Most species are saprophytic soil forms with only a few species being pathogenic. Bacillus bacterium
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D015500 Chloramphenicol O-Acetyltransferase An enzyme that catalyzes the acetylation of chloramphenicol to yield chloramphenicol 3-acetate. Since chloramphenicol 3-acetate does not bind to bacterial ribosomes and is not an inhibitor of peptidyltransferase, the enzyme is responsible for the naturally occurring chloramphenicol resistance in bacteria. The enzyme, for which variants are known, is found in both gram-negative and gram-positive bacteria. EC 2.3.1.28. CAT Enzyme,Chloramphenicol Acetyltransferase,Chloramphenicol Transacetylase,Acetyltransferase, Chloramphenicol,Chloramphenicol O Acetyltransferase,Enzyme, CAT,O-Acetyltransferase, Chloramphenicol,Transacetylase, Chloramphenicol

Related Publications

C R Harwood, and D E Bell, and A K Winston
October 1983, Gene,
C R Harwood, and D E Bell, and A K Winston
January 1990, Journal of bacteriology,
C R Harwood, and D E Bell, and A K Winston
May 1988, Proceedings of the National Academy of Sciences of the United States of America,
C R Harwood, and D E Bell, and A K Winston
August 1990, Journal of bacteriology,
C R Harwood, and D E Bell, and A K Winston
January 1985, Molecular & general genetics : MGG,
C R Harwood, and D E Bell, and A K Winston
August 2018, BMC research notes,
C R Harwood, and D E Bell, and A K Winston
June 2014, Genome announcements,
Copied contents to your clipboard!