A cDNA encoding the precursor of the rat neuropeptide, neurokinin B. 1987

T I Bonner, and H U Affolter, and A C Young, and W S Young
Laboratory of Cell Biology, National Institute of Mental Health, Bethesda, MD 20892.

We have isolated a cDNA clone from a rat cerebral cortex library which encodes the 116 amino acid precursor of the neuropeptide, neurokinin B. The precursor has 68% amino acid homology to the bovine precursor and encodes a single peptide of the tachykinin family. Except for possible small variations at both ends of the message, there appears to be only a single species of neurokinin B mRNA in rat cerebral cortex. In situ hybridization histochemistry indicates that the message is widely distributed in the rat brain in a pattern distinct from that of substance P message.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009479 Neuropeptides Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells. Neuropeptide
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D011498 Protein Precursors Precursors, Protein
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

T I Bonner, and H U Affolter, and A C Young, and W S Young
April 1985, Proceedings of the National Academy of Sciences of the United States of America,
T I Bonner, and H U Affolter, and A C Young, and W S Young
April 1989, Regulatory peptides,
T I Bonner, and H U Affolter, and A C Young, and W S Young
July 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience,
T I Bonner, and H U Affolter, and A C Young, and W S Young
September 1998, Neuroreport,
T I Bonner, and H U Affolter, and A C Young, and W S Young
July 1992, Gene,
T I Bonner, and H U Affolter, and A C Young, and W S Young
January 1984, Nature,
T I Bonner, and H U Affolter, and A C Young, and W S Young
March 1989, Biochemical and biophysical research communications,
T I Bonner, and H U Affolter, and A C Young, and W S Young
August 1983, Proceedings of the National Academy of Sciences of the United States of America,
T I Bonner, and H U Affolter, and A C Young, and W S Young
August 1989, Biochemical and biophysical research communications,
Copied contents to your clipboard!