Selective effects of bumetanide on chloride transport in bullfrog cornea. 1978

O A Candia, and H F Schoen

Frog corneas were mounted in a modified Ussing chamber and short-circuit current (SCC) and unidirectional Cl fluxes were measured. Bumetanide, a loop diuretic, at concentrations as low as 10(-7) M, reduced the SCC 29%. At 10(-5) M, bumetanide reduced the SCC 96% and increased transcorneal electrical resistance 20-51%. The forward Cl flux declined from 0.71 +/- 0.04 to 0.20 +/- 0.03 mueq/h.cm2 (n, 7), while, in separate experiments, the backward Cl flux did not change significantly (from 0.22 +/- 0.03 to 0.23 +/- 0.04; n, 7). When corneas were mounted in Cl-free Ringer and the net Na transport was stimulated with amphotericin B, 10(-5) M bumetanide had no effect on the SCC. In separate experiments the effect of 10(-5) M bumetanide on the O2 consumption was measured in a stirrer bath assembly. Bumetanide decreased the O2 consumption from 352 +/- 14 to 297 +/- 19 microliter/h.cm2 (significantly different from sham-treated controls). This decrease was similar to that obtained with furosemide or when Cl was removed from the bathing medium. We infer from these results that bumetanide is a selective inhibitor of active Cl transport in the bullfrog cornea.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D011458 Prostaglandins E (11 alpha,13E,15S)-11,15-Dihydroxy-9-oxoprost-13-en-1-oic acid (PGE(1)); (5Z,11 alpha,13E,15S)-11,15-dihydroxy-9-oxoprosta-5,13-dien-1-oic acid (PGE(2)); and (5Z,11 alpha,13E,15S,17Z)-11,15-dihydroxy-9-oxoprosta-5,13,17-trien-1-oic acid (PGE(3)). Three of the six naturally occurring prostaglandins. They are considered primary in that no one is derived from another in living organisms. Originally isolated from sheep seminal fluid and vesicles, they are found in many organs and tissues and play a major role in mediating various physiological activities. PGE
D011892 Rana catesbeiana A species of the family Ranidae (true frogs). The only anuran properly referred to by the common name "bullfrog", it is the largest native anuran in North America. Bullfrog,Bullfrogs,Rana catesbeianas,catesbeiana, Rana
D002034 Bumetanide A sulfamyl diuretic. Bumedyl,Bumethanide,Bumex,Burinex,Drenural,Fordiuran,Miccil,PF-1593,PF 1593,PF1593
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D003315 Cornea The transparent anterior portion of the fibrous coat of the eye consisting of five layers: stratified squamous CORNEAL EPITHELIUM; BOWMAN MEMBRANE; CORNEAL STROMA; DESCEMET MEMBRANE; and mesenchymal CORNEAL ENDOTHELIUM. It serves as the first refracting medium of the eye. It is structurally continuous with the SCLERA, avascular, receiving its nourishment by permeation through spaces between the lamellae, and is innervated by the ophthalmic division of the TRIGEMINAL NERVE via the ciliary nerves and those of the surrounding conjunctiva which together form plexuses. (Cline et al., Dictionary of Visual Science, 4th ed) Corneas
D004232 Diuretics Agents that promote the excretion of urine through their effects on kidney function. Diuretic,Diuretic Effect,Diuretic Effects,Effect, Diuretic,Effects, Diuretic
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000001 Calcimycin An ionophorous, polyether antibiotic from Streptomyces chartreusensis. It binds and transports CALCIUM and other divalent cations across membranes and uncouples oxidative phosphorylation while inhibiting ATPase of rat liver mitochondria. The substance is used mostly as a biochemical tool to study the role of divalent cations in various biological systems. 4-Benzoxazolecarboxylic acid, 5-(methylamino)-2-((3,9,11-trimethyl-8-(1-methyl-2-oxo-2-(1H-pyrrol-2-yl)ethyl)-1,7-dioxaspiro(5.5)undec-2-yl)methyl)-, (6S-(6alpha(2S*,3S*),8beta(R*),9beta,11alpha))-,A-23187,A23187,Antibiotic A23187,A 23187,A23187, Antibiotic

Related Publications

O A Candia, and H F Schoen
July 1978, Biochimica et biophysica acta,
O A Candia, and H F Schoen
March 1973, Experimental eye research,
O A Candia, and H F Schoen
May 1990, Acta physiologica Scandinavica,
O A Candia, and H F Schoen
November 1972, The American journal of physiology,
O A Candia, and H F Schoen
October 1977, The Journal of pharmacology and experimental therapeutics,
O A Candia, and H F Schoen
May 1986, The Journal of surgical research,
O A Candia, and H F Schoen
February 1981, The American journal of physiology,
O A Candia, and H F Schoen
September 1968, Biochimica et biophysica acta,
O A Candia, and H F Schoen
December 1987, Israel journal of medical sciences,
Copied contents to your clipboard!