Bacteriophage PRD1 DNA polymerase: evolution of DNA polymerases. 1987

G H Jung, and M C Leavitt, and J C Hsieh, and J Ito
Department of Microbiology and Immunology, University of Arizona Health Sciences Center, Tucson 85724.

A small lipid-containing bacteriophage PRD1 specifies its own DNA polymerase that utilizes terminal protein as a primer for DNA synthesis. The PRD1 DNA polymerase gene has been sequenced, and its amino acid sequence has been deduced. This protein-primed DNA polymerase consists of 553 amino acid residues with a calculated molecular weight of 63,300. Thus, it appears to be the smallest DNA polymerase ever isolated from prokaryotic cells. Comparison of the PRD1 DNA polymerase sequence with other DNA polymerase sequences that have been published yielded segmental but significant homologies. These results strongly suggest that many prokaryotic and eukaryotic DNA polymerase genes, regardless of size, have evolved from a common ancestral gene. The results further indicate that those DNA polymerases that use either an RNA or protein primer are related. We propose to classify DNA polymerases on the basis of their evolutionary relatedness.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D004259 DNA-Directed DNA Polymerase DNA-dependent DNA polymerases found in bacteria, animal and plant cells. During the replication process, these enzymes catalyze the addition of deoxyribonucleotide residues to the end of a DNA strand in the presence of DNA as template-primer. They also possess exonuclease activity and therefore function in DNA repair. DNA Polymerase,DNA Polymerases,DNA-Dependent DNA Polymerases,DNA Polymerase N3,DNA Dependent DNA Polymerases,DNA Directed DNA Polymerase,DNA Polymerase, DNA-Directed,DNA Polymerases, DNA-Dependent,Polymerase N3, DNA,Polymerase, DNA,Polymerase, DNA-Directed DNA,Polymerases, DNA,Polymerases, DNA-Dependent DNA
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001435 Bacteriophages Viruses whose hosts are bacterial cells. Phages,Bacteriophage,Phage
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014780 Viruses Minute infectious agents whose genomes are composed of DNA or RNA, but not both. They are characterized by a lack of independent metabolism and the inability to replicate outside living host cells. Animal Viruses,Zoophaginae,Animal Virus,Virus,Virus, Animal,Viruses, Animal

Related Publications

G H Jung, and M C Leavitt, and J C Hsieh, and J Ito
January 2022, International journal of molecular sciences,
G H Jung, and M C Leavitt, and J C Hsieh, and J Ito
December 1995, The EMBO journal,
G H Jung, and M C Leavitt, and J C Hsieh, and J Ito
October 1994, Biochimica et biophysica acta,
G H Jung, and M C Leavitt, and J C Hsieh, and J Ito
June 2010, Current protocols in chemical biology,
G H Jung, and M C Leavitt, and J C Hsieh, and J Ito
January 1968, Cold Spring Harbor symposia on quantitative biology,
G H Jung, and M C Leavitt, and J C Hsieh, and J Ito
November 1991, Journal of molecular biology,
G H Jung, and M C Leavitt, and J C Hsieh, and J Ito
April 1991, Journal of molecular biology,
Copied contents to your clipboard!