Immunosuppressive activity of a cycloartane triterpene glycoside from Beesia calthaefolia by inhibiting T cell proliferation. 2021

Li-Hua Mu, and Qiong Wang, and Jin-Yuan Zhao, and Ping Liu, and Yuan Hu
Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, Beijing 100853, China.

BC-1 is a cycloartane triterpene glycoside isolated from the whole plant of Beesia calthaefolia. Our recent studies proved that BC-1 inhibited proliferation of splenic lymphocyte and phagocytosis of macrophages, and inhibited the increased production of TNF-α and IL-1β. However, it lacks of study about the immunomodulatory effect of BC-1 on purified T lymphocytes. Therefore, in the present study, we evaluated the suppressive potentials of BC-1 on immune responses in vitro. BC-1 markedly suppressed anti-CD3/CD28 mAbs (mAbs) induced murine T lymphocytes proliferation, the expression levels of CD69 and CD25 of CD3+ T cells. BC-1 could strongly decrease ratio of CD4+/CD8+, decrease the Th1/Th2 cytokines production (IL-2, IFN-γ, IL-4, and IL-10) of CD4+ T-cells. In addition, we studied signal transduction pathways about T-cell activation on puried murine CD4+ T lymphocytes by western-blot assay. The data revealed that BC-1 could inhibit the activation of JNK, ERK and PI3K/AKT signal transduction pathways. These results indicated that BC-1 possesses potential downregulating effect on the immune system and might be developed as an immunosuppressive agent in treatment of CD4+ T cell-mediated inflammatory and undesired immune responses.

UI MeSH Term Description Entries
D007166 Immunosuppressive Agents Agents that suppress immune function by one of several mechanisms of action. Classical cytotoxic immunosuppressants act by inhibiting DNA synthesis. Others may act through activation of T-CELLS or by inhibiting the activation of HELPER CELLS. While immunosuppression has been brought about in the past primarily to prevent rejection of transplanted organs, new applications involving mediation of the effects of INTERLEUKINS and other CYTOKINES are emerging. Immunosuppressant,Immunosuppressive Agent,Immunosuppressants,Agent, Immunosuppressive,Agents, Immunosuppressive
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D006027 Glycosides Any compound that contains a constituent sugar, in which the hydroxyl group attached to the first carbon is substituted by an alcoholic, phenolic, or other group. They are named specifically for the sugar contained, such as glucoside (glucose), pentoside (pentose), fructoside (fructose), etc. Upon hydrolysis, a sugar and nonsugar component (aglycone) are formed. (From Dorland, 28th ed; From Miall's Dictionary of Chemistry, 5th ed) Glycoside
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013154 Spleen An encapsulated lymphatic organ through which venous blood filters.
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D014315 Triterpenes A class of terpenes (the general formula C30H48) formed by the condensation of six isoprene units, equivalent to three terpene units. Triterpene,Triterpenoid,Triterpenoids
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

Li-Hua Mu, and Qiong Wang, and Jin-Yuan Zhao, and Ping Liu, and Yuan Hu
January 2016, Natural product research,
Li-Hua Mu, and Qiong Wang, and Jin-Yuan Zhao, and Ping Liu, and Yuan Hu
January 2013, Natural product research,
Li-Hua Mu, and Qiong Wang, and Jin-Yuan Zhao, and Ping Liu, and Yuan Hu
July 2014, Journal of natural medicines,
Li-Hua Mu, and Qiong Wang, and Jin-Yuan Zhao, and Ping Liu, and Yuan Hu
January 2002, Journal of natural products,
Li-Hua Mu, and Qiong Wang, and Jin-Yuan Zhao, and Ping Liu, and Yuan Hu
January 2014, Fitoterapia,
Li-Hua Mu, and Qiong Wang, and Jin-Yuan Zhao, and Ping Liu, and Yuan Hu
November 2016, Journal of Asian natural products research,
Li-Hua Mu, and Qiong Wang, and Jin-Yuan Zhao, and Ping Liu, and Yuan Hu
October 2016, Natural product research,
Li-Hua Mu, and Qiong Wang, and Jin-Yuan Zhao, and Ping Liu, and Yuan Hu
January 2023, Natural product research,
Li-Hua Mu, and Qiong Wang, and Jin-Yuan Zhao, and Ping Liu, and Yuan Hu
January 2022, Natural product research,
Li-Hua Mu, and Qiong Wang, and Jin-Yuan Zhao, and Ping Liu, and Yuan Hu
February 2002, Journal of natural products,
Copied contents to your clipboard!