Hepatic carbon flux after re-feeding in the glycogen-storage-disease (gsd/gsd) rat. 1987

M J Holness, and T N Palmer, and E B Worrall, and M C Sugden
Department of Chemical Pathology, London Hospital Medical College, U.K.

In this study we utilized the phosphorylase b kinase-deficient (gsd/gsd) rat as a model of hepatic substrate utilization where there is a constraint on glycogenesis imposed by the maintenance of high glycogen concentrations. Glucose re-feeding of 48 h-starved gsd/gsd rats led to suppression of hepatic glucose output. In contrast with the situation in normal rats, activation of the pyruvate dehydrogenase complex and lipogenesis was observed. It is suggested that impeding glycogenic flux may divert substrate into lipogenesis, possibly via activation of the pyruvate dehydrogenase complex.

UI MeSH Term Description Entries
D007657 Ketone Bodies The metabolic substances ACETONE; 3-HYDROXYBUTYRIC ACID; and acetoacetic acid (ACETOACETATES). They are produced in the liver and kidney during FATTY ACIDS oxidation and used as a source of energy by the heart, muscle and brain. Acetone Bodies,Bodies, Acetone,Bodies, Ketone
D008055 Lipids A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed) Lipid
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008112 Liver Glycogen Glycogen stored in the liver. (Dorland, 28th ed) Hepatic Glycogen,Glycogen, Hepatic,Glycogen, Liver
D011768 Pyruvate Dehydrogenase Complex A multienzyme complex responsible for the formation of ACETYL COENZYME A from pyruvate. The enzyme components are PYRUVATE DEHYDROGENASE (LIPOAMIDE); dihydrolipoamide acetyltransferase; and LIPOAMIDE DEHYDROGENASE. Pyruvate dehydrogenase complex is subject to three types of control: inhibited by acetyl-CoA and NADH; influenced by the energy state of the cell; and inhibited when a specific serine residue in the pyruvate decarboxylase is phosphorylated by ATP. PYRUVATE DEHYDROGENASE (LIPOAMIDE)-PHOSPHATASE catalyzes reactivation of the complex. (From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed) Complex, Pyruvate Dehydrogenase,Dehydrogenase Complex, Pyruvate
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005230 Fatty Acids, Nonesterified FATTY ACIDS found in the plasma that are complexed with SERUM ALBUMIN for transport. These fatty acids are not in glycerol ester form. Fatty Acids, Free,Free Fatty Acid,Free Fatty Acids,NEFA,Acid, Free Fatty,Acids, Free Fatty,Acids, Nonesterified Fatty,Fatty Acid, Free,Nonesterified Fatty Acids
D005260 Female Females
D005502 Food Substances taken in by the body to provide nourishment. Foods

Related Publications

M J Holness, and T N Palmer, and E B Worrall, and M C Sugden
January 1988, Current topics in cellular regulation,
M J Holness, and T N Palmer, and E B Worrall, and M C Sugden
September 1986, The Biochemical journal,
M J Holness, and T N Palmer, and E B Worrall, and M C Sugden
December 2001, Nihon rinsho. Japanese journal of clinical medicine,
M J Holness, and T N Palmer, and E B Worrall, and M C Sugden
November 1985, The Biochemical journal,
M J Holness, and T N Palmer, and E B Worrall, and M C Sugden
May 1980, Metabolism: clinical and experimental,
M J Holness, and T N Palmer, and E B Worrall, and M C Sugden
March 1982, The Biochemical journal,
M J Holness, and T N Palmer, and E B Worrall, and M C Sugden
October 2008, BMC physiology,
M J Holness, and T N Palmer, and E B Worrall, and M C Sugden
August 1982, FEBS letters,
Copied contents to your clipboard!