Structural basis for the substrate recognition mechanism of ATP-sulfurylase domain of human PAPS synthase 2. 2022

Pan Zhang, and Lin Zhang, and Zhaoyuan Hou, and Houwen Lin, and Hai Gao, and Liang Zhang
Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.

Sulfation is an essential modification on biomolecules in living cells, and 3'-Phosphoadenosine-5'-phosphosulfate (PAPS) is its unique and universal sulfate donor. Human PAPS synthases (PAPSS1 and 2) are the only enzymes that catalyze PAPS production from inorganic sulfate. Unexpectedly, PAPSS1 and PAPSS2 do not functional complement with each other, and abnormal function of PAPSS2 but not PAPSS1 leads to numerous human diseases including bone development diseases, hormone disorder and cancers. Here, we reported the crystal structures of ATP-sulfurylase domain of human PAPSS2 (ATPS2) and ATPS2 in complex with is product 5'-phosphosulfate (APS). We demonstrated that ATPS2 recognizes the substrates by using family conserved residues located on the HXXH and PP motifs, and achieves substrate binding and releasing by employing a non-conserved phenylalanine (Phe550) through a never observed flipping mechanism. Our discovery provides additional information to better understand the biological function of PAPSS2 especially in tumorigenesis, and may facilitate the drug discovery against this enzyme.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D010724 Phosphoadenosine Phosphosulfate 3'-Phosphoadenosine-5'-phosphosulfate. Key intermediate in the formation by living cells of sulfate esters of phenols, alcohols, steroids, sulfated polysaccharides, and simple esters, such as choline sulfate. It is formed from sulfate ion and ATP in a two-step process. This compound also is an important step in the process of sulfur fixation in plants and microorganisms. Adenosine-3'-phosphate-5'-Phosphosulfate,Adenosine 3' phosphate 5' Phosphosulfate,Phosphosulfate, Phosphoadenosine
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Pan Zhang, and Lin Zhang, and Zhaoyuan Hou, and Houwen Lin, and Hai Gao, and Liang Zhang
March 2020, Biomolecules,
Pan Zhang, and Lin Zhang, and Zhaoyuan Hou, and Houwen Lin, and Hai Gao, and Liang Zhang
September 2017, Structure (London, England : 1993),
Pan Zhang, and Lin Zhang, and Zhaoyuan Hou, and Houwen Lin, and Hai Gao, and Liang Zhang
June 2006, Journal of molecular biology,
Pan Zhang, and Lin Zhang, and Zhaoyuan Hou, and Houwen Lin, and Hai Gao, and Liang Zhang
October 2009, Acta crystallographica. Section D, Biological crystallography,
Pan Zhang, and Lin Zhang, and Zhaoyuan Hou, and Houwen Lin, and Hai Gao, and Liang Zhang
December 2009, Bioorganic & medicinal chemistry letters,
Pan Zhang, and Lin Zhang, and Zhaoyuan Hou, and Houwen Lin, and Hai Gao, and Liang Zhang
November 2007, Chemistry & biology,
Pan Zhang, and Lin Zhang, and Zhaoyuan Hou, and Houwen Lin, and Hai Gao, and Liang Zhang
March 1994, Biochemistry,
Pan Zhang, and Lin Zhang, and Zhaoyuan Hou, and Houwen Lin, and Hai Gao, and Liang Zhang
November 2015, Genes & development,
Pan Zhang, and Lin Zhang, and Zhaoyuan Hou, and Houwen Lin, and Hai Gao, and Liang Zhang
October 2007, Molecular cell,
Pan Zhang, and Lin Zhang, and Zhaoyuan Hou, and Houwen Lin, and Hai Gao, and Liang Zhang
September 2011, Biochemistry,
Copied contents to your clipboard!