A traveling-wave solution for bacterial chemotaxis with growth. 2021

Avaneesh V Narla, and Jonas Cremer, and Terence Hwa
Department of Physics, University of California San Diego, La Jolla, CA 92093.

Bacterial cells navigate their environment by directing their movement along chemical gradients. This process, known as chemotaxis, can promote the rapid expansion of bacterial populations into previously unoccupied territories. However, despite numerous experimental and theoretical studies on this classical topic, chemotaxis-driven population expansion is not understood in quantitative terms. Building on recent experimental progress, we here present a detailed analytical study that provides a quantitative understanding of how chemotaxis and cell growth lead to rapid and stable expansion of bacterial populations. We provide analytical relations that accurately describe the dependence of the expansion speed and density profile of the expanding population on important molecular, cellular, and environmental parameters. In particular, expansion speeds can be boosted by orders of magnitude when the environmental availability of chemicals relative to the cellular limits of chemical sensing is high. Analytical understanding of such complex spatiotemporal dynamic processes is rare. Our analytical results and the methods employed to attain them provide a mathematical framework for investigations of the roles of taxis in diverse ecological contexts across broad parameter regimes.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D009068 Movement The act, process, or result of passing from one place or position to another. It differs from LOCOMOTION in that locomotion is restricted to the passing of the whole body from one place to another, while movement encompasses both locomotion but also a change of the position of the whole body or any of its parts. Movement may be used with reference to humans, vertebrate and invertebrate animals, and microorganisms. Differentiate also from MOTOR ACTIVITY, movement associated with behavior. Movements
D002633 Chemotaxis The movement of cells or organisms toward or away from a substance in response to its concentration gradient. Haptotaxis
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D001686 Biological Phenomena Biological processes, properties, and characteristics of the whole organism in human, animal, microorganisms, and plants, and of the biosphere. Biological Processes,Biologic Phenomena,Biological Phenomenon,Biological Process,Phenomena, Biological,Phenomena, Biologic,Phenomenon, Biological,Process, Biological,Processes, Biological
D049109 Cell Proliferation All of the processes involved in increasing CELL NUMBER including CELL DIVISION. Cell Growth in Number,Cellular Proliferation,Cell Multiplication,Cell Number Growth,Growth, Cell Number,Multiplication, Cell,Number Growth, Cell,Proliferation, Cell,Proliferation, Cellular
D018407 Bacterial Physiological Phenomena Physiological processes and properties of BACTERIA. Bacterial Physiology,Bacterial Processes,Bacterial Physiological Concepts,Bacterial Physiological Phenomenon,Bacterial Process,Physiology, Bacterial,Bacterial Physiological Concept,Concept, Bacterial Physiological,Concepts, Bacterial Physiological,Phenomena, Bacterial Physiological,Phenomenon, Bacterial Physiological,Process, Bacterial,Processes, Bacterial

Related Publications

Avaneesh V Narla, and Jonas Cremer, and Terence Hwa
July 1996, Physical review letters,
Avaneesh V Narla, and Jonas Cremer, and Terence Hwa
August 2014, Journal of contaminant hydrology,
Avaneesh V Narla, and Jonas Cremer, and Terence Hwa
March 2023, Bulletin of mathematical biology,
Avaneesh V Narla, and Jonas Cremer, and Terence Hwa
November 2010, Journal of mathematical biology,
Avaneesh V Narla, and Jonas Cremer, and Terence Hwa
April 2016, PLoS computational biology,
Avaneesh V Narla, and Jonas Cremer, and Terence Hwa
November 1996, Physical review. B, Condensed matter,
Avaneesh V Narla, and Jonas Cremer, and Terence Hwa
May 2010, Optics express,
Avaneesh V Narla, and Jonas Cremer, and Terence Hwa
February 2002, Physical review. E, Statistical, nonlinear, and soft matter physics,
Avaneesh V Narla, and Jonas Cremer, and Terence Hwa
July 2016, Journal of the American Society for Mass Spectrometry,
Copied contents to your clipboard!