An Overview of Recent Insights into the Response of TLR to SARS-CoV-2 Infection and the Potential of TLR Agonists as SARS-CoV-2 Vaccine Adjuvants. 2021

Mohammad Enamul Hoque Kayesh, and Michinori Kohara, and Kyoko Tsukiyama-Kohara
Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan.

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to coronavirus disease (COVID-19), a global health pandemic causing millions of deaths worldwide. However, the immunopathogenesis of COVID-19, particularly the interaction between SARS-CoV-2 and host innate immunity, remains unclear. The innate immune system acts as the first line of host defense, which is critical for the initial detection of invading pathogens and the activation and shaping of adaptive immunity. Toll-like receptors (TLRs) are key sensors of innate immunity that recognize pathogen-associated molecular patterns and activate downstream signaling for pro-inflammatory cytokine and chemokine production. However, TLRs may also act as a double-edged sword, and dysregulated TLR responses may enhance immune-mediated pathology, instead of providing protection. Therefore, a proper understanding of the interaction between TLRs and SARS-CoV-2 is of great importance for devising therapeutic and preventive strategies. The use of TLR agonists as vaccine adjuvants for human disease is a promising approach that could be applied in the investigation of COVID-19 vaccines. In this review, we discuss the recent progress in our understanding of host innate immune responses in SARS-CoV-2 infection, with particular focus on TLR response. In addition, we discuss the use of TLR agonists as vaccine adjuvants in enhancing the efficacy of COVID-19 vaccine.

UI MeSH Term Description Entries
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000086382 COVID-19 A viral disorder generally characterized by high FEVER; COUGH; DYSPNEA; CHILLS; PERSISTENT TREMOR; MUSCLE PAIN; HEADACHE; SORE THROAT; a new loss of taste and/or smell (see AGEUSIA and ANOSMIA) and other symptoms of a VIRAL PNEUMONIA. In severe cases, a myriad of coagulopathy associated symptoms often correlating with COVID-19 severity is seen (e.g., BLOOD COAGULATION; THROMBOSIS; ACUTE RESPIRATORY DISTRESS SYNDROME; SEIZURES; HEART ATTACK; STROKE; multiple CEREBRAL INFARCTIONS; KIDNEY FAILURE; catastrophic ANTIPHOSPHOLIPID ANTIBODY SYNDROME and/or DISSEMINATED INTRAVASCULAR COAGULATION). In younger patients, rare inflammatory syndromes are sometimes associated with COVID-19 (e.g., atypical KAWASAKI SYNDROME; TOXIC SHOCK SYNDROME; pediatric multisystem inflammatory disease; and CYTOKINE STORM SYNDROME). A coronavirus, SARS-CoV-2, in the genus BETACORONAVIRUS is the causative agent. 2019 Novel Coronavirus Disease,2019 Novel Coronavirus Infection,2019-nCoV Disease,2019-nCoV Infection,COVID-19 Pandemic,COVID-19 Pandemics,COVID-19 Virus Disease,COVID-19 Virus Infection,Coronavirus Disease 2019,Coronavirus Disease-19,SARS Coronavirus 2 Infection,SARS-CoV-2 Infection,Severe Acute Respiratory Syndrome Coronavirus 2 Infection,COVID19,2019 nCoV Disease,2019 nCoV Infection,2019-nCoV Diseases,2019-nCoV Infections,COVID 19,COVID 19 Pandemic,COVID 19 Virus Disease,COVID 19 Virus Infection,COVID-19 Virus Diseases,COVID-19 Virus Infections,Coronavirus Disease 19,Disease 2019, Coronavirus,Disease, 2019-nCoV,Disease, COVID-19 Virus,Infection, 2019-nCoV,Infection, COVID-19 Virus,Infection, SARS-CoV-2,Pandemic, COVID-19,SARS CoV 2 Infection,SARS-CoV-2 Infections,Virus Disease, COVID-19,Virus Infection, COVID-19
D000086402 SARS-CoV-2 A species of BETACORONAVIRUS causing atypical respiratory disease (COVID-19) in humans. The organism was first identified in 2019 in Wuhan, China. The natural host is the Chinese intermediate horseshoe bat, RHINOLOPHUS affinis. 2019 Novel Coronavirus,COVID-19 Virus,COVID19 Virus,Coronavirus Disease 2019 Virus,SARS Coronavirus 2,SARS-CoV-2 Virus,Severe Acute Respiratory Syndrome Coronavirus 2,Wuhan Coronavirus,Wuhan Seafood Market Pneumonia Virus,2019-nCoV,2019 Novel Coronaviruses,COVID 19 Virus,COVID-19 Viruses,COVID19 Viruses,Coronavirus 2, SARS,Coronavirus, 2019 Novel,Coronavirus, Wuhan,Novel Coronavirus, 2019,SARS CoV 2 Virus,SARS-CoV-2 Viruses,Virus, COVID-19,Virus, COVID19,Virus, SARS-CoV-2,Viruses, COVID19
D000086663 COVID-19 Vaccines Vaccines or candidate vaccines containing SARS-CoV-2 component antigens, genetic materials, or inactivated SARS-CoV-2 virus, and designed to prevent COVID-19. 2019 Novel Coronavirus Vaccine,2019 Novel Coronavirus Vaccines,2019-nCoV Vaccine,2019-nCoV Vaccines,COVID 19 Vaccine,COVID-19 Vaccine,COVID-19 Virus Vaccine,COVID-19 Virus Vaccines,COVID19 Vaccine,COVID19 Vaccines,COVID19 Virus Vaccine,COVID19 Virus Vaccines,Coronavirus Disease 2019 Vaccine,Coronavirus Disease 2019 Vaccines,Coronavirus Disease 2019 Virus Vaccine,Coronavirus Disease 2019 Virus Vaccines,Coronavirus Disease-19 Vaccine,Coronavirus Disease-19 Vaccines,SARS Coronavirus 2 Vaccines,SARS-CoV-2 Vaccine,SARS-CoV-2 Vaccines,SARS2 Vaccine,SARS2 Vaccines,2019 nCoV Vaccine,2019 nCoV Vaccines,COVID 19 Vaccines,COVID 19 Virus Vaccine,COVID 19 Virus Vaccines,Coronavirus Disease 19 Vaccine,Coronavirus Disease 19 Vaccines,SARS CoV 2 Vaccine,SARS CoV 2 Vaccines,Vaccine, 2019-nCoV,Vaccine, COVID 19,Vaccine, COVID-19,Vaccine, COVID-19 Virus,Vaccine, COVID19,Vaccine, COVID19 Virus,Vaccine, Coronavirus Disease-19,Vaccine, SARS-CoV-2,Vaccine, SARS2,Vaccines, 2019-nCoV,Vaccines, COVID-19,Vaccines, COVID-19 Virus,Vaccines, COVID19,Vaccines, COVID19 Virus,Vaccines, Coronavirus Disease-19,Vaccines, SARS-CoV-2,Vaccines, SARS2,Virus Vaccine, COVID-19,Virus Vaccine, COVID19,Virus Vaccines, COVID-19,Virus Vaccines, COVID19
D000087507 Vaccine Efficacy A measurement of disease risk reduction among vaccinated compared to unvaccinated persons under ideal conditions such as in a clinical trial. Such disease reduction measured under typical field conditions is vaccine effectiveness. In contrast vaccine potency is measured in an assay to ensure proper dosing and storage of vaccines whereas vaccine immunogenicity measures its ability to induce an immune response in a vaccinated individual in observational studies. Vaccine Effectiveness,Efficacy, Vaccine
D000089582 Adjuvants, Vaccine Substances consisting of different components, e.g. aluminum salts, EMULSIONS such as MF59 and AS03, Toll-like receptor (TLR) agonist or combinations of IMMUNOPOTENTIATORS (QS-21 and MPL in AS01), that helps increase the magnitude of an ADAPTIVE IMMUNE RESPONSE to a VACCINE. Vaccine Adjuvant,Vaccine Adjuvants
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051193 Toll-Like Receptors A family of pattern recognition receptors characterized by an extracellular leucine-rich domain and a cytoplasmic domain that share homology with the INTERLEUKIN 1 RECEPTOR and the DROSOPHILA toll protein. Following pathogen recognition, toll-like receptors recruit and activate a variety of SIGNAL TRANSDUCING ADAPTOR PROTEINS. Receptors, Toll-Like,Toll-Like Receptor,Receptor, Toll-Like,Receptors, Toll Like,Toll Like Receptor,Toll Like Receptors

Related Publications

Mohammad Enamul Hoque Kayesh, and Michinori Kohara, and Kyoko Tsukiyama-Kohara
April 2011, Expert review of vaccines,
Mohammad Enamul Hoque Kayesh, and Michinori Kohara, and Kyoko Tsukiyama-Kohara
January 2015, Current medicinal chemistry,
Mohammad Enamul Hoque Kayesh, and Michinori Kohara, and Kyoko Tsukiyama-Kohara
June 2023, Virology journal,
Mohammad Enamul Hoque Kayesh, and Michinori Kohara, and Kyoko Tsukiyama-Kohara
January 2021, Pharmaceutics,
Mohammad Enamul Hoque Kayesh, and Michinori Kohara, and Kyoko Tsukiyama-Kohara
January 2023, Reviews in medical virology,
Mohammad Enamul Hoque Kayesh, and Michinori Kohara, and Kyoko Tsukiyama-Kohara
June 2021, ACS infectious diseases,
Mohammad Enamul Hoque Kayesh, and Michinori Kohara, and Kyoko Tsukiyama-Kohara
December 2020, International journal of biological macromolecules,
Mohammad Enamul Hoque Kayesh, and Michinori Kohara, and Kyoko Tsukiyama-Kohara
January 2020, Current tropical medicine reports,
Mohammad Enamul Hoque Kayesh, and Michinori Kohara, and Kyoko Tsukiyama-Kohara
June 2021, Acta medica portuguesa,
Mohammad Enamul Hoque Kayesh, and Michinori Kohara, and Kyoko Tsukiyama-Kohara
October 2020, ACS pharmacology & translational science,
Copied contents to your clipboard!