The epidermal growth factor-induced calcium signal in A431 cells. 1986

W H Moolenaar, and R J Aerts, and L G Tertoolen, and S W de Laat

Addition of epidermal growth factor (EGF) to human A431 cells causes a 2-4-fold increase in cytoplasmic free Ca2+ concentration ([Ca2+]i) as measured by quin-2 fluorescence. The EGF effect is rapid but transient: [Ca2+]i reaches a maximum within 30-60 s and then returns to its resting value (182 +/- 3 nM) over a 5-8-min period. The EGF-induced [Ca2+]i rise is completely dependent on extracellular Ca2+, is abolished by La3+ and Mn2+, and is not accompanied by changes in membrane potential (mean values of -64 mV). Serum also elicits a transient [Ca2+]i rise in A431 cells, but this response is not dependent on the presence of extracellular Ca2+. The tumor promoter 12-O-tetradecanoylphorbol 13-acetate completely inhibits the EGF- and serum-induced increases in [Ca2+]i without affecting basal [Ca2+]i levels. Our results, together with previous 45Ca2+ uptake data (Sawyer, S. T., and Cohen, S. (1981) Biochemistry 20, 6280-6286), suggest that while serum factors trigger the release of Ca2+ from internal stores, EGF acts by opening a voltage-independent Ca2+ channel in the plasma membrane. The data further suggest a role for protein kinase C in attenuating the Ca2+-mobilizing mechanisms of EGF and serum.

UI MeSH Term Description Entries
D007811 Lanthanum The prototypical element in the rare earth family of metals. It has the atomic symbol La, atomic number 57, and atomic weight 138.91. Lanthanide ion is used in experimental biology as a calcium antagonist; lanthanum oxide improves the optical properties of glass.
D008345 Manganese A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D001769 Blood The body fluid that circulates in the vascular system (BLOOD VESSELS). Whole blood includes PLASMA and BLOOD CELLS.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002294 Carcinoma, Squamous Cell A carcinoma derived from stratified SQUAMOUS EPITHELIAL CELLS. It may also occur in sites where glandular or columnar epithelium is normally present. (From Stedman, 25th ed) Carcinoma, Epidermoid,Carcinoma, Planocellular,Carcinoma, Squamous,Squamous Cell Carcinoma,Carcinomas, Epidermoid,Carcinomas, Planocellular,Carcinomas, Squamous,Carcinomas, Squamous Cell,Epidermoid Carcinoma,Epidermoid Carcinomas,Planocellular Carcinoma,Planocellular Carcinomas,Squamous Carcinoma,Squamous Carcinomas,Squamous Cell Carcinomas
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell

Related Publications

W H Moolenaar, and R J Aerts, and L G Tertoolen, and S W de Laat
February 1992, The Physiologist,
W H Moolenaar, and R J Aerts, and L G Tertoolen, and S W de Laat
August 1987, FEBS letters,
W H Moolenaar, and R J Aerts, and L G Tertoolen, and S W de Laat
April 2003, European journal of biochemistry,
W H Moolenaar, and R J Aerts, and L G Tertoolen, and S W de Laat
August 1987, Tsitologiia,
W H Moolenaar, and R J Aerts, and L G Tertoolen, and S W de Laat
March 1984, The EMBO journal,
W H Moolenaar, and R J Aerts, and L G Tertoolen, and S W de Laat
August 1983, The Journal of biological chemistry,
W H Moolenaar, and R J Aerts, and L G Tertoolen, and S W de Laat
March 1989, Biochimica et biophysica acta,
W H Moolenaar, and R J Aerts, and L G Tertoolen, and S W de Laat
March 1992, Biochemical and biophysical research communications,
W H Moolenaar, and R J Aerts, and L G Tertoolen, and S W de Laat
May 1988, Journal of cellular physiology,
Copied contents to your clipboard!