In vitro differentiation of B lymphocytes from primitive hemopoietic precursors present in long-term bone marrow cultures. 1986

K Dorshkind

B lymphocytes are not produced in the Dexter long-term bone marrow cultures, but a primitive B cell precursor is present. The findings presented in this study demonstrate that this precursor can be induced to produce B lymphocytes by transferring the cultures to the Whitlock conditions for the long-term growth of B cells in vitro. Two weeks after the transfer of cultures maintained at 33 degrees C in medium supplemented with horse serum and steroids to low concentrations of fetal calf serum at 37 degrees C, marked effects can be observed. The pattern of cell growth changes from one in which the hemopoietic cells are clustered in tight foci containing several hundred cells to smaller ones in which the cells are not as densely packed. Fat cells in the adherent layer disappear and the supporting stroma becomes more uniform in appearance. This change in the culture format is accompanied by a decrease in the number of nonadherent cells and a shift from myelopoiesis to lymphopoiesis. The numbers of granulocyte-macrophage progenitors decline weekly after the change in culture conditions and are not detected by the third week. B cell colony-forming units appear by 3 wk. Cells that express the 14.8 cell surface antigen are induced by 1 wk after the change in culture conditions, followed by the appearance of surface IgM-bearing cells 2 wk later. This shift to lymphopoiesis can be confirmed morphologically. Granulocytes and macrophages disappear from the cultures by 4 wk, at which time almost all of the cells have a characteristic lymphocyte morphology. Upon switching these cultures back to the original Dexter conditions, only low levels of transient myelopoiesis can be reinitiated.

UI MeSH Term Description Entries
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005260 Female Females
D006098 Granulocytes Leukocytes with abundant granules in the cytoplasm. They are divided into three groups according to the staining properties of the granules: neutrophilic, eosinophilic, and basophilic. Mature granulocytes are the NEUTROPHILS; EOSINOPHILS; and BASOPHILS. Granulocyte
D006410 Hematopoiesis The development and formation of various types of BLOOD CELLS. Hematopoiesis can take place in the BONE MARROW (medullary) or outside the bone marrow (HEMATOPOIESIS, EXTRAMEDULLARY). Hematopoiesis, Medullary,Haematopoiesis,Medullary Hematopoiesis
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming

Related Publications

K Dorshkind
June 1982, Proceedings of the National Academy of Sciences of the United States of America,
K Dorshkind
January 1987, Methods in enzymology,
K Dorshkind
November 1986, Journal of immunology (Baltimore, Md. : 1950),
K Dorshkind
January 1984, Bibliotheca haematologica,
K Dorshkind
June 1989, The American journal of medicine,
Copied contents to your clipboard!