Role of the nucleoside transport function in the transport and salvage of purine nucleobases. 1986

B Aronow, and B Ullman

Genetic deficiencies in the nucleoside transport function markedly altered the abilities of cultured mutant S49 T lymphoblasts to transport, incorporate, and salvage exogenous hypoxanthine. The concentrations of exogenous hypoxanthine required to reverse azaserine toxicity and replenish azaserine-depleted nucleoside triphosphate pools in AE1 cells, a nucleoside transport-deficient clone, were about 10-fold higher than those required for wild type cells. In a similar fashion, guanine could reverse mycophenolic acid toxicity in wild type but not in AE1 cells. Surprisingly, a second nucleoside transport-deficient clone, 80-5D2, which had lost 80-90% of its ability to transport nucleosides, required lower hypoxanthine concentrations than the wild type parent to reverse these azaserine-mediated effects. The addition of submicromolar concentrations of either p-nitrobenzylthioinosine or dipyridamole, two potent inhibitors of nucleoside transport, to wild type cells mimicked the phenotype of the AE1 cells with respect to hypoxanthine. AE1 cells or p-nitrobenzylthioinosine-treated wild type cells could only transport hypoxanthine at 10-25% the rate of untreated wild type cells, whereas 80-5D2 cells could transport hypoxanthine more efficiently. Adenine transport was also diminished in AE1 and FURD-80-3-6 cells, but not to sufficiently low levels to interfere with their ability to salvage adenine to overcome azaserine toxicity. These studies on S49 cells altered in their nucleoside transport capacity provide powerful genetic evidence that purine nucleobases share a common transport function with nucleosides in these mammalian T lymphoblasts.

UI MeSH Term Description Entries
D007042 Hypoxanthines Purine bases related to hypoxanthine, an intermediate product of uric acid synthesis and a breakdown product of adenine catabolism.
D009705 Nucleosides Purine or pyrimidine bases attached to a ribose or deoxyribose. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleoside,Nucleoside Analog,Nucleoside Analogs,Analog, Nucleoside,Analogs, Nucleoside
D011687 Purines A series of heterocyclic compounds that are variously substituted in nature and are known also as purine bases. They include ADENINE and GUANINE, constituents of nucleic acids, as well as many alkaloids such as CAFFEINE and THEOPHYLLINE. Uric acid is the metabolic end product of purine metabolism.
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004176 Dipyridamole A phosphodiesterase inhibitor that blocks uptake and metabolism of adenosine by erythrocytes and vascular endothelial cells. Dipyridamole also potentiates the antiaggregating action of prostacyclin. (From AMA Drug Evaluations Annual, 1994, p752) Antistenocardin,Apo-Dipyridamole,Cerebrovase,Cléridium,Curantil,Curantyl,Dipyramidole,Kurantil,Miosen,Novo-Dipiradol,Persantin,Persantine,Apo Dipyridamole,Novo Dipiradol
D000225 Adenine A purine base and a fundamental unit of ADENINE NUCLEOTIDES. Vitamin B 4,4, Vitamin B,B 4, Vitamin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000964 Antimetabolites, Antineoplastic Antimetabolites that are useful in cancer chemotherapy. Antineoplastic Antimetabolites
D001377 Azaserine Antibiotic substance produced by various Streptomyces species. It is an inhibitor of enzymatic activities that involve glutamine and is used as an antineoplastic and immunosuppressive agent. Azeserine,LL-D05139a,O-Diazoacetyl-L-serine,O Diazoacetyl L serine
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic

Related Publications

B Aronow, and B Ullman
March 1998, Molecular and cellular biochemistry,
B Aronow, and B Ullman
August 1993, The Journal of physiology,
B Aronow, and B Ullman
July 1984, Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire,
B Aronow, and B Ullman
January 1993, The Journal of eukaryotic microbiology,
B Aronow, and B Ullman
January 1980, Immunological communications,
Copied contents to your clipboard!