Secondary, tertiary, and quaternary structure of T-cell-specific immunoglobulin-like polypeptide chains. 1986

J Novotný, and S Tonegawa, and H Saito, and D M Kranz, and H N Eisen

To explore the possibility that the difference in antigen recognition between B and T cells derives from a structural difference in their respective antigen-specific receptors (immunoglobulins on B cells and immunoglobulin-like molecules on T cells), we compared the extracellular segments of the T-cell receptor alpha, beta, and gamma polypeptide chains and the N-terminal segment of the T-cell T8 (Lyt-2) antigen chain with the corresponding regions of immunoglobulins whose three-dimensional structures are known. The results indicate that the four T-cell polypeptide chains are organized into immunoglobulin-like domains consisting of multistranded antiparallel beta-sheet bilayers. Invariant amino acid side chains that are conserved in diverse immunoglobulins, including those that mediate domain-domain interactions and form a constant scaffold for antibody binding sites, are also conserved in the chains encoded by the T-cell receptor genes and in the N-terminal domain of T8 (Lyt-2). It appears that the binding sites of the antigen-specific T-cell alpha beta-chain receptors and of antibodies are very similar in their overall dimensions and geometry: a T-cell alpha beta receptor molecule probably has an antigen-specific binding site that is fundamentally no different than the conventional binding site of an antibody.

UI MeSH Term Description Entries
D007136 Immunoglobulins Multi-subunit proteins which function in IMMUNITY. They are produced by B LYMPHOCYTES from the IMMUNOGLOBULIN GENES. They are comprised of two heavy (IMMUNOGLOBULIN HEAVY CHAINS) and two light chains (IMMUNOGLOBULIN LIGHT CHAINS) with additional ancillary polypeptide chains depending on their isoforms. The variety of isoforms include monomeric or polymeric forms, and transmembrane forms (B-CELL ANTIGEN RECEPTORS) or secreted forms (ANTIBODIES). They are divided by the amino acid sequence of their heavy chains into five classes (IMMUNOGLOBULIN A; IMMUNOGLOBULIN D; IMMUNOGLOBULIN E; IMMUNOGLOBULIN G; IMMUNOGLOBULIN M) and various subclasses. Globulins, Immune,Immune Globulin,Immune Globulins,Immunoglobulin,Globulin, Immune
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

J Novotný, and S Tonegawa, and H Saito, and D M Kranz, and H N Eisen
May 1994, Protein engineering,
J Novotný, and S Tonegawa, and H Saito, and D M Kranz, and H N Eisen
April 1968, The Journal of biological chemistry,
J Novotný, and S Tonegawa, and H Saito, and D M Kranz, and H N Eisen
October 1974, Journal of biochemistry,
J Novotný, and S Tonegawa, and H Saito, and D M Kranz, and H N Eisen
January 1970, Progress in allergy,
J Novotný, and S Tonegawa, and H Saito, and D M Kranz, and H N Eisen
April 1993, Immunological reviews,
J Novotný, and S Tonegawa, and H Saito, and D M Kranz, and H N Eisen
September 1973, Zeitschrift fur klinische Chemie und klinische Biochemie,
J Novotný, and S Tonegawa, and H Saito, and D M Kranz, and H N Eisen
February 1976, Journal of immunology (Baltimore, Md. : 1950),
J Novotný, and S Tonegawa, and H Saito, and D M Kranz, and H N Eisen
April 1977, European journal of biochemistry,
J Novotný, and S Tonegawa, and H Saito, and D M Kranz, and H N Eisen
February 1987, FEBS letters,
J Novotný, and S Tonegawa, and H Saito, and D M Kranz, and H N Eisen
October 1975, Nature,
Copied contents to your clipboard!