Analgesia induced by 5-hydroxytryptamine receptor agonists is blocked or reversed by noradrenaline-depletion in rats. 1986

C Post, and B G Minor, and M Davies, and T Archer

The antinociceptive effect of acute administration of 5-HT receptor agonists and agents releasing 5-HT from neuronal terminals was studied in rats by using the hot-plate, tail-flick and shock-titration tests. Noradrenaline depletion by the noradrenaline-neurotoxin N-2-chloroethyl-N-ethyl-2-bromo-benzylamine hydrochloride (DSP4, 2 X 50 mg/kg) blocked the analgesia induced by the 5-hydroxytryptamine (5-HT) receptor agonists 5-methoxy-N,N-dimethyltryptamine (5-MeODMT) and quipazine, as well as that induced by acute release of 5-HT by p-chloroamphetamine (PCA) and increased 5-HT synthesis by 5-hydroxytryptophan (5-HTP). Analgesia in the tail-flick test was partly blocked by both methergoline and mianserin, whereas the analgesic effects of 5-MeODMT in the hot-plate and shock-titration tests were unaffected by the 5-HT antagonists. In the shock-titration test it was found that the DSP4-pretreated animals were made hyperalgesic by acute 5-MeODMT, and this hyperalgesia was blocked by both mianserin and methergoline, implying that this effect was 5-HT receptor mediated. It is therefore concluded that a functional central noradrenergic system is required for eliciting 5-HT receptor mediated analgesia, and that these interactions, at least in part, are probably spinally located.

UI MeSH Term Description Entries
D008297 Male Males
D008732 Methoxydimethyltryptamines Compounds that contain the biogenic monoamine tryptamine and are substituted with one methoxy group and two methyl groups. Members of this group include several potent serotonergic hallucinogens found in several unrelated plants, skins of certain toads, and in mammalian brains. They are possibly involved in the etiology of schizophrenia. Methylbufotenin,5-Methoxy-N,N-Dimethyltryptamine,Methoxydimethyltryptamine,N,N-Dimethyl-5-Methoxytryptamine,5 Methoxy N,N Dimethyltryptamine,N,N Dimethyl 5 Methoxytryptamine
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010133 p-Chloroamphetamine Chlorinated analog of AMPHETAMINE. Potent neurotoxin that causes release and eventually depletion of serotonin in the CNS. It is used as a research tool. p-Chloramphetamine,para-Chloroamphetamine,LY-121860,Ly-123362,Parachloroamphetamine,LY 121860,LY121860,Ly 123362,Ly123362,p Chloramphetamine,p Chloroamphetamine,para Chloroamphetamine
D010146 Pain An unpleasant sensation induced by noxious stimuli which are detected by NERVE ENDINGS of NOCICEPTIVE NEURONS. Suffering, Physical,Ache,Pain, Burning,Pain, Crushing,Pain, Migratory,Pain, Radiating,Pain, Splitting,Aches,Burning Pain,Burning Pains,Crushing Pain,Crushing Pains,Migratory Pain,Migratory Pains,Pains, Burning,Pains, Crushing,Pains, Migratory,Pains, Radiating,Pains, Splitting,Physical Suffering,Physical Sufferings,Radiating Pain,Radiating Pains,Splitting Pain,Splitting Pains,Sufferings, Physical
D011814 Quipazine A pharmacologic congener of serotonin that contracts smooth muscle and has actions similar to those of tricyclic antidepressants. It has been proposed as an oxytocic. 2-(1-Piperazinyl)quinoline,MA-1291,Quipazine Hydrochloride,Quipazine Maleate,Quipazine Maleate (1:1),MA 1291,MA1291
D011985 Receptors, Serotonin Cell-surface proteins that bind SEROTONIN and trigger intracellular changes which influence the behavior of cells. Several types of serotonin receptors have been recognized which differ in their pharmacology, molecular biology, and mode of action. 5-HT Receptor,5-HT Receptors,5-Hydroxytryptamine Receptor,5-Hydroxytryptamine Receptors,Receptors, Tryptamine,Serotonin Receptor,Serotonin Receptors,Tryptamine Receptor,Tryptamine Receptors,Receptors, 5-HT,Receptors, 5-Hydroxytryptamine,5 HT Receptor,5 HT Receptors,5 Hydroxytryptamine Receptor,5 Hydroxytryptamine Receptors,Receptor, 5-HT,Receptor, 5-Hydroxytryptamine,Receptor, Serotonin,Receptor, Tryptamine,Receptors, 5 HT,Receptors, 5 Hydroxytryptamine
D002490 Central Nervous System The main information-processing organs of the nervous system, consisting of the brain, spinal cord, and meninges. Cerebrospinal Axis,Axi, Cerebrospinal,Axis, Cerebrospinal,Central Nervous Systems,Cerebrospinal Axi,Nervous System, Central,Nervous Systems, Central,Systems, Central Nervous
D006916 5-Hydroxytryptophan The immediate precursor in the biosynthesis of SEROTONIN from tryptophan. It is used as an antiepileptic and antidepressant. 5-HTP,Hydroxytryptophan,Oxitriptan,Oxytryptophan,Tryptophan, 5-Hydroxy-,5 Hydroxytryptophan,5-Hydroxy- Tryptophan,Tryptophan, 5 Hydroxy
D000700 Analgesics Compounds capable of relieving pain without the loss of CONSCIOUSNESS. Analgesic,Anodynes,Antinociceptive Agents,Analgesic Agents,Analgesic Drugs,Agents, Analgesic,Agents, Antinociceptive,Drugs, Analgesic

Related Publications

C Post, and B G Minor, and M Davies, and T Archer
July 2019, Bioelectromagnetics,
C Post, and B G Minor, and M Davies, and T Archer
March 1980, Brain research,
C Post, and B G Minor, and M Davies, and T Archer
June 1989, Neuropharmacology,
C Post, and B G Minor, and M Davies, and T Archer
May 1972, British journal of pharmacology,
C Post, and B G Minor, and M Davies, and T Archer
February 1959, Journal of neurochemistry,
C Post, and B G Minor, and M Davies, and T Archer
July 2001, European journal of pharmacology,
C Post, and B G Minor, and M Davies, and T Archer
July 1980, The Journal of physiology,
Copied contents to your clipboard!