The relationship between mitogen-induced membrane potential changes and intracellular free calcium in human T-lymphocytes. 1986

P E Tatham, and K O'Flynn, and D C Linch

We have investigated the effects of mitogenic lectins on human T-lymphocytes, isolated from peripheral blood, and cells from the T-cell clone, HPB-ALL, using the fluorescent dyes, bis-thiobarbiturate tri-methineoxonol (bisoxonol) and quin2 to sense changes in membrane potential and intracellular free [Ca2+], respectively. The resting potential of both cell types is close to the K+ equilibrium potential. Changes from the resting level occur when mitogenic concentrations of either concanavalin A or phytohaemagglutinin are added. T-lymphocytes undergo a decrease in emission, maximal at 1 to 2 min, corresponding to a small membrane hyperpolarization. This is followed by a depolarization to approximately the resting level. HPB-ALL cells, on the other hand, respond to the mitogens by a sustained increase in fluorescence, denoting a depolarization, that is maximal at 4 to 5 min and 7 to 9 min, respectively. The Ca2+-dependence of these phenomena indicates that the membrane potential response, in both cell types, is the resultant of two opposing effects: a Ca2+-sensitive ion movement tending to hyperpolarize the cells and a Ca2+-insensitive effect that generates a depolarization. Our results suggest that Ca2+-activated K+ channels are responsible for the first effect and that an inward Na+ movement accounts for the depolarization signal in T-lymphocytes. In HPB-ALL cells only part of the depolarization is Na+-dependent. Although the effects elicited by phytohaemagglutinin occur more slowly than those produced by concanavalin A, similar membrane potential and [Ca2+]i changes occur.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007945 Leukemia, Lymphoid Leukemia associated with HYPERPLASIA of the lymphoid tissues and increased numbers of circulating malignant LYMPHOCYTES and lymphoblasts. Leukemia, Lymphocytic,Lymphocytic Leukemia,Lymphoid Leukemia,Leukemias, Lymphocytic,Leukemias, Lymphoid,Lymphocytic Leukemias,Lymphoid Leukemias
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000634 Aminoquinolines Quinolines substituted in any position by one or more amino groups.

Related Publications

P E Tatham, and K O'Flynn, and D C Linch
December 1984, The American journal of physiology,
P E Tatham, and K O'Flynn, and D C Linch
March 1981, Journal of immunology (Baltimore, Md. : 1950),
P E Tatham, and K O'Flynn, and D C Linch
January 1991, Annals of the New York Academy of Sciences,
P E Tatham, and K O'Flynn, and D C Linch
January 1997, Canadian journal of veterinary research = Revue canadienne de recherche veterinaire,
P E Tatham, and K O'Flynn, and D C Linch
January 1984, Journal of receptor research,
P E Tatham, and K O'Flynn, and D C Linch
October 1996, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
P E Tatham, and K O'Flynn, and D C Linch
October 1976, Experimental cell research,
Copied contents to your clipboard!