Inhibition of the immunoproteasome LMP2 ameliorates ischemia/hypoxia-induced blood-brain barrier injury through the Wnt/β-catenin signalling pathway. 2021

Xing-Yong Chen, and Shao-Fen Wan, and Nan-Nan Yao, and Ze-Jing Lin, and Yan-Guang Mao, and Xiao-Hua Yu, and Yin-Zhou Wang
Department of Neurology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, No. 134, Dongjie, Gulou District, Fuzhou, 350001, Fujian, China. cxyong77@163.com.

Disruption of the blood-brain barrier (BBB) after a stroke can lead to brain injury and neurological impairment. Previous work confirmed the involvement of the immunoproteasome subunit of low molecular mass peptide 2 (LMP2) in the pathophysiology of ischemia stroke. However, the relationship between the immunoproteasome LMP2 and the BBB remains unclear. Adult male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion/reperfusion (MCAO/R). Three days before MCAO, the rats were treated with lentivirus-mediated LMP2 shRNA preparations by stereotactical injection into the ipsilateral hemispheric region. The rat brain microvascular endothelial cell (RBMVEC) line was exposed to oxygen-glucose deprivation/reperfusion (OGD/R) to mimic ischemic conditions in vitro. The RNA interference-mediated knockdown of LMP2 or β-catenin was analysed in vivo and in vitro. Analysis of the quantity of extravasated Evans blue (EB) and cerebral fluorescent angiography were performed to evaluate the integrity of the BBB. Immunofluorescence and Western blotting were employed to detect the expression of target proteins. Cell migration was evaluated using a scratch migration assay. The results of immunofluorescence, Western blotting and cell migration were quantified using the software ImageJ (Version 1.53m). Parametric data from different groups were compared using one-way ANOVA followed by the least significant difference (LSD) test. Cerebral ischemia led to lower levels of structural components of the BBB such as tight junction proteins (occludin, claudin-1 and ZO-1) in the MCAO/R group compared with the sham group (P < 0.001). However, inhibition of the immunoproteasome LMP2 restored the expression of these proteins, resulting in higher levels of occludin, claudin-1 and ZO-1 in the LMP2-shRNA group compared with the control-shRNA group (P < 0.001). In addition, inhibition of the immunoproteasome LMP2 contributed to higher microvascular density and decreased BBB permeability [e.g., the quantity of extravasated EB: LMP2-shRNA group (58.54 ± 7.37) µg/g vs. control-shRNA group (103.74 ± 4.32) µg/g, P < 0.001], and promoted the upregulation of Wnt-3a and β-catenin proteins in rats following MCAO/R. In vitro experiments, OGD/R induced marked upregulation of LMP2, proapoptotic protein Bax and cleaved caspase-3, and downregulation of occludin, claudin-1, ZO-1 and Bcl-2, as well as inhibition of the Wnt/β-catenin pathway Wnt-3a and β-catenin proteins in RBMVECs, compared with the control group under normal culture conditions (P < 0.001). However, silencing of LMP2 gene expression reversed these protein changes and promoted proliferation and migration of RBMVECs following OGD/R. Silencing of β-catenin by transfection of RBMVECs with β-catenin-siRNA aggravated the downregulation of tight junction proteins, and reduced the proliferation and migration of RBMVECs following OGD/R, compared with the control-siRNA group (P < 0.001). LMP2-siRNA and β-catenin-siRNA co-transfection partly counteracted the beneficial effects of silencing LMP2-siRNA on the levels of tight junction proteins in RBMVECs exposed to OGD/R. This study suggests that inhibition of the immunoproteasome LMP2 ameliorates ischemia/hypoxia-induced BBB injury, and that the molecular mechanism involves the immunoproteasome-regulated activation of the Wnt/β-catenin signalling pathway under ischemic conditions.

UI MeSH Term Description Entries
D008297 Male Males
D001812 Blood-Brain Barrier Specialized non-fenestrated tightly-joined ENDOTHELIAL CELLS with TIGHT JUNCTIONS that form a transport barrier for certain substances between the cerebral capillaries and the BRAIN tissue. Brain-Blood Barrier,Hemato-Encephalic Barrier,Barrier, Blood-Brain,Barrier, Brain-Blood,Barrier, Hemato-Encephalic,Barriers, Blood-Brain,Barriers, Brain-Blood,Barriers, Hemato-Encephalic,Blood Brain Barrier,Blood-Brain Barriers,Brain Blood Barrier,Brain-Blood Barriers,Hemato Encephalic Barrier,Hemato-Encephalic Barriers
D002534 Hypoxia, Brain A reduction in brain oxygen supply due to ANOXEMIA (a reduced amount of oxygen being carried in the blood by HEMOGLOBIN), or to a restriction of the blood supply to the brain, or both. Severe hypoxia is referred to as anoxia and is a relatively common cause of injury to the central nervous system. Prolonged brain anoxia may lead to BRAIN DEATH or a PERSISTENT VEGETATIVE STATE. Histologically, this condition is characterized by neuronal loss which is most prominent in the HIPPOCAMPUS; GLOBUS PALLIDUS; CEREBELLUM; and inferior olives. Anoxia, Brain,Anoxic Encephalopathy,Brain Hypoxia,Cerebral Anoxia,Encephalopathy, Hypoxic,Hypoxic Encephalopathy,Anoxia, Cerebral,Anoxic Brain Damage,Brain Anoxia,Cerebral Hypoxia,Hypoxia, Cerebral,Hypoxic Brain Damage,Anoxic Encephalopathies,Brain Damage, Anoxic,Brain Damage, Hypoxic,Damage, Anoxic Brain,Damage, Hypoxic Brain,Encephalopathies, Anoxic,Encephalopathies, Hypoxic,Encephalopathy, Anoxic,Hypoxic Encephalopathies
D003546 Cysteine Endopeptidases ENDOPEPTIDASES which have a cysteine involved in the catalytic process. This group of enzymes is inactivated by CYSTEINE PROTEINASE INHIBITORS such as CYSTATINS and SULFHYDRYL REAGENTS.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D046988 Proteasome Endopeptidase Complex A large multisubunit complex that plays an important role in the degradation of most of the cytosolic and nuclear proteins in eukaryotic cells. It contains a 700-kDa catalytic sub-complex and two 700-kDa regulatory sub-complexes. The complex digests ubiquitinated proteins and protein activated via ornithine decarboxylase antizyme. 20S Proteasome,Ingensin,Macropain,Macroxyproteinase,Multicatalytic Endopeptidase Complex,Multicatalytic Proteinase,Prosome,Proteasome,Complex, Multicatalytic Endopeptidase,Complex, Proteasome Endopeptidase,Endopeptidase Complex, Multicatalytic,Endopeptidase Complex, Proteasome,Proteasome, 20S,Proteinase, Multicatalytic
D051176 beta Catenin A multi-functional catenin that participates in CELL ADHESION and nuclear signaling. Beta catenin binds CADHERINS and helps link their cytoplasmic tails to the ACTIN in the CYTOSKELETON via ALPHA CATENIN. It also serves as a transcriptional co-activator and downstream component of WNT PROTEIN-mediated SIGNAL TRANSDUCTION PATHWAYS. beta-Catenin,Catenin, beta
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

Xing-Yong Chen, and Shao-Fen Wan, and Nan-Nan Yao, and Ze-Jing Lin, and Yan-Guang Mao, and Xiao-Hua Yu, and Yin-Zhou Wang
August 2016, Scientific reports,
Xing-Yong Chen, and Shao-Fen Wan, and Nan-Nan Yao, and Ze-Jing Lin, and Yan-Guang Mao, and Xiao-Hua Yu, and Yin-Zhou Wang
August 2019, Journal of cellular physiology,
Xing-Yong Chen, and Shao-Fen Wan, and Nan-Nan Yao, and Ze-Jing Lin, and Yan-Guang Mao, and Xiao-Hua Yu, and Yin-Zhou Wang
January 2022, International journal of biological sciences,
Xing-Yong Chen, and Shao-Fen Wan, and Nan-Nan Yao, and Ze-Jing Lin, and Yan-Guang Mao, and Xiao-Hua Yu, and Yin-Zhou Wang
January 2020, American journal of translational research,
Xing-Yong Chen, and Shao-Fen Wan, and Nan-Nan Yao, and Ze-Jing Lin, and Yan-Guang Mao, and Xiao-Hua Yu, and Yin-Zhou Wang
September 2023, Functional & integrative genomics,
Xing-Yong Chen, and Shao-Fen Wan, and Nan-Nan Yao, and Ze-Jing Lin, and Yan-Guang Mao, and Xiao-Hua Yu, and Yin-Zhou Wang
August 2018, Journal of cellular and molecular medicine,
Xing-Yong Chen, and Shao-Fen Wan, and Nan-Nan Yao, and Ze-Jing Lin, and Yan-Guang Mao, and Xiao-Hua Yu, and Yin-Zhou Wang
December 2023, Journal of exercise rehabilitation,
Xing-Yong Chen, and Shao-Fen Wan, and Nan-Nan Yao, and Ze-Jing Lin, and Yan-Guang Mao, and Xiao-Hua Yu, and Yin-Zhou Wang
February 2013, Cell proliferation,
Xing-Yong Chen, and Shao-Fen Wan, and Nan-Nan Yao, and Ze-Jing Lin, and Yan-Guang Mao, and Xiao-Hua Yu, and Yin-Zhou Wang
January 2020, Folia neuropathologica,
Xing-Yong Chen, and Shao-Fen Wan, and Nan-Nan Yao, and Ze-Jing Lin, and Yan-Guang Mao, and Xiao-Hua Yu, and Yin-Zhou Wang
September 2020, Brain research bulletin,
Copied contents to your clipboard!