Intelligent Sports Video Classification Based on Deep Neural Network (DNN) Algorithm and Transfer Learning. 2021

Xiaoping Guo
Shaanxi Normal University, Xi'an, Shaanxi 710000, China.

Traditional text annotation-based video retrieval is done by manually labeling videos with text, which is inefficient and highly subjective and generally cannot accurately describe the meaning of videos. Traditional content-based video retrieval uses convolutional neural networks to extract the underlying feature information of images to build indexes and achieves similarity retrieval of video feature vectors according to certain similarity measure algorithms. In this paper, by studying the characteristics of sports videos, we propose the histogram difference method based on using transfer learning and the four-step method based on block matching for mutation detection and fading detection of video shots, respectively. By adaptive thresholding, regions with large frame difference changes are marked as candidate regions for shots, and then the shot boundaries are determined by mutation detection algorithm. Combined with the characteristics of sports video, this paper proposes a key frame extraction method based on clustering and optical flow analysis, and experimental comparison with the traditional clustering method. In addition, this paper proposes a key frame extraction algorithm based on clustering and optical flow analysis for key frame extraction of sports video. The algorithm effectively removes the redundant frames, and the extracted key frames are more representative. Through extensive experiments, the keyword fuzzy finding algorithm based on improved deep neural network and ontology semantic expansion proposed in this paper shows a more desirable retrieval performance, and it is feasible to use this method for video underlying feature extraction, annotation, and keyword finding, and one of the outstanding features of the algorithm is that it can quickly and effectively retrieve the desired video in a large number of Internet video resources, reducing the false detection rate and leakage rate while improving the fidelity, which basically meets people's daily needs.

UI MeSH Term Description Entries
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000069550 Machine Learning A type of ARTIFICIAL INTELLIGENCE that enable COMPUTERS to independently initiate and execute LEARNING when exposed to new data. Transfer Learning,Learning, Machine,Learning, Transfer
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D014741 Video Recording The storing or preserving of video signals to be played back later via a transmitter or receiver. Audiovisual Recording,Videorecording,Audiovisual Recordings,Recording, Audiovisual,Recording, Video,Recordings, Audiovisual,Recordings, Video,Video Recordings,Videorecordings
D016000 Cluster Analysis A set of statistical methods used to group variables or observations into strongly inter-related subgroups. In epidemiology, it may be used to analyze a closely grouped series of events or cases of disease or other health-related phenomenon with well-defined distribution patterns in relation to time or place or both. Clustering,Analyses, Cluster,Analysis, Cluster,Cluster Analyses,Clusterings
D016571 Neural Networks, Computer A computer architecture, implementable in either hardware or software, modeled after biological neural networks. Like the biological system in which the processing capability is a result of the interconnection strengths between arrays of nonlinear processing nodes, computerized neural networks, often called perceptrons or multilayer connectionist models, consist of neuron-like units. A homogeneous group of units makes up a layer. These networks are good at pattern recognition. They are adaptive, performing tasks by example, and thus are better for decision-making than are linear learning machines or cluster analysis. They do not require explicit programming. Computational Neural Networks,Connectionist Models,Models, Neural Network,Neural Network Models,Neural Networks (Computer),Perceptrons,Computational Neural Network,Computer Neural Network,Computer Neural Networks,Connectionist Model,Model, Connectionist,Model, Neural Network,Models, Connectionist,Network Model, Neural,Network Models, Neural,Network, Computational Neural,Network, Computer Neural,Network, Neural (Computer),Networks, Computational Neural,Networks, Computer Neural,Networks, Neural (Computer),Neural Network (Computer),Neural Network Model,Neural Network, Computational,Neural Network, Computer,Neural Networks, Computational,Perceptron

Related Publications

Xiaoping Guo
January 2022, Computational intelligence and neuroscience,
Xiaoping Guo
August 2021, Biomedical engineering online,
Xiaoping Guo
January 2022, Computational intelligence and neuroscience,
Copied contents to your clipboard!