Activation of the first component of human complement, C1, by monoclonal antibodies directed against different domains of subcomponent C1q. 1986

E Kilchherr, and V N Schumaker, and M L Phillips, and L K Curtiss

Two monoclonal antibodies directed against C1q, and their (Fab)2 and Fab fragments, were used to study the mechanism of C1 activation. Monoclonal antibody 2A10, an IgG2a, was digested by pepsin to yield fully immunoreactive (Fab')2. Monoclonal antibody 1H11, an IgG1, was digested by papain to yield fully immunoreactive, bivalent (Fab)2. Previously 1H11 had been shown to bind to the C1q "heads," whereas 2A10 bound to stalks. Activation of C1 was followed by the cleavage of 125I-C1s in the presence of C1 inhibitor (C1-Inh) at 37 degrees C. Spontaneous activation was minimal at inhibitor concentrations above 0.4 micron (1.3 X physiologic inhibitor concentration); all results were corrected for the spontaneous activation background. Heat-aggregated IgG activated completely in this system and was taken as 100% activation. Monoclonal antibody 2A10 caused precipitation of C1 and slow activation; neither the (Fab')2 nor the Fab' derived from 2A10-caused activation. Probably, aggregates of intact 2A10 and C1 were serving as immune complexes to activate other molecules of C1. In contrast, both 1H11 and its (Fab)2 activated completely and stoichiometrically; that is, maximal activation was achieved at a ratio of one C1q head to one antibody combining site. The monovalent Fab derived from 1H11 bound well to C1q, but no activation of C1 was observed. Thus, bivalent binding of this head-binding monoclonal is required for C1 activation, but not the presence of the antibody Fc portion. Neither 1H11 nor its (Fab)2 fragments caused C1 precipitation; however, the 1H11 did form complexes composed of two C1q cross-linked by multiple 1H11, which were visualized by electron microscopy. The presence of these dimeric complexes correlated well with activation. A model for C1 activation is proposed in which two C1q subcomponents are held together by multiple (Fab)2 bridging C1q heads. The model is roughly analogous to touching opposing pairs of fingers and thumb tips, the two hands representing the two C1q, forming a cage. C1-Inh, which probably binds to C1r through the open end of the C1 cone, is too long asymmetric to be included within the cage. Thus, according to this model, the dimers of C1 are released from the inhibitory action of C1-Inh, and activation proceeds spontaneously and rapidly at 37 degrees C.

UI MeSH Term Description Entries
D007140 Immunoglobulin Fab Fragments Univalent antigen-binding fragments composed of one entire IMMUNOGLOBULIN LIGHT CHAIN and the amino terminal end of one of the IMMUNOGLOBULIN HEAVY CHAINS from the hinge region, linked to each other by disulfide bonds. Fab contains the IMMUNOGLOBULIN VARIABLE REGIONS, which are part of the antigen-binding site, and the first IMMUNOGLOBULIN CONSTANT REGIONS. This fragment can be obtained by digestion of immunoglobulins with the proteolytic enzyme PAPAIN. Fab Fragment,Fab Fragments,Ig Fab Fragments,Immunoglobulins, Fab Fragment,Fab Immunoglobulin Fragments,Immunoglobulin Fab Fragment,Immunoglobulins, Fab,Fab Fragment Immunoglobulins,Fab Fragment, Immunoglobulin,Fab Fragments, Immunoglobulin,Fragment Immunoglobulins, Fab,Fragment, Fab,Immunoglobulin Fragments, Fab
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D003166 Complement Activating Enzymes Enzymes that activate one or more COMPLEMENT PROTEINS in the complement system leading to the formation of the COMPLEMENT MEMBRANE ATTACK COMPLEX, an important response in host defense. They are enzymes in the various COMPLEMENT ACTIVATION pathways. Activating Enzymes, Complement,Enzymes, Complement Activating
D003167 Complement Activation The sequential activation of serum COMPLEMENT PROTEINS to create the COMPLEMENT MEMBRANE ATTACK COMPLEX. Factors initiating complement activation include ANTIGEN-ANTIBODY COMPLEXES, microbial ANTIGENS, or cell surface POLYSACCHARIDES. Activation, Complement,Activations, Complement,Complement Activations
D003172 Complement C1 The first complement component to act in the activation of CLASSICAL COMPLEMENT PATHWAY. It is a calcium-dependent trimolecular complex made up of three subcomponents: COMPLEMENT C1Q; COMPLEMENT C1R; and COMPLEMENT C1S at 1:2:2 ratios. When the intact C1 binds to at least two antibodies (involving C1q), C1r and C1s are sequentially activated, leading to subsequent steps in the cascade of COMPLEMENT ACTIVATION. C1 Complement,Complement 1,Complement Component 1,C1, Complement,Complement, C1,Component 1, Complement
D003174 Complement C1 Inactivator Proteins Serum proteins that inhibit, antagonize, or inactivate COMPLEMENT C1 or its subunits. Complement 1 Esterase Inhibitors,Complement C1 Inactivating Proteins,Complement C1 Inhibiting Proteins,Complement C1 Inhibitor Proteins,Complement C1r Protease Inhibitor Proteins,Complement C1s Esterase Inhibitor Proteins,Complement Component 1 Inactivator Proteins
D004306 Dose-Response Relationship, Immunologic A specific immune response elicited by a specific dose of an immunologically active substance or cell in an organism, tissue, or cell. Immunologic Dose-Response Relationship,Relationship, Immunologic Dose-Response,Dose Response Relationship, Immunologic,Dose-Response Relationships, Immunologic,Immunologic Dose Response Relationship,Immunologic Dose-Response Relationships,Relationship, Immunologic Dose Response,Relationships, Immunologic Dose-Response
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal

Related Publications

E Kilchherr, and V N Schumaker, and M L Phillips, and L K Curtiss
June 1980, Nature,
E Kilchherr, and V N Schumaker, and M L Phillips, and L K Curtiss
June 1991, Molecular immunology,
E Kilchherr, and V N Schumaker, and M L Phillips, and L K Curtiss
February 1984, Journal of immunology (Baltimore, Md. : 1950),
E Kilchherr, and V N Schumaker, and M L Phillips, and L K Curtiss
July 1984, Journal of immunology (Baltimore, Md. : 1950),
E Kilchherr, and V N Schumaker, and M L Phillips, and L K Curtiss
November 1984, Journal of molecular biology,
E Kilchherr, and V N Schumaker, and M L Phillips, and L K Curtiss
November 1986, Journal of immunology (Baltimore, Md. : 1950),
E Kilchherr, and V N Schumaker, and M L Phillips, and L K Curtiss
April 1976, The Biochemical journal,
E Kilchherr, and V N Schumaker, and M L Phillips, and L K Curtiss
January 1977, Monographs in allergy,
E Kilchherr, and V N Schumaker, and M L Phillips, and L K Curtiss
May 1978, Biochemistry,
E Kilchherr, and V N Schumaker, and M L Phillips, and L K Curtiss
August 1980, The Journal of biological chemistry,
Copied contents to your clipboard!