The effect of GTP on inositol 1,4,5-trisphosphate-stimulated Ca2+ efflux from a rat liver microsomal fraction. Is a GTP-dependent protein phosphorylation involved? 1986

A P Dawson, and J G Comerford, and D V Fulton

GTP, when added to a rat liver microsomal fraction that had previously been allowed to accumulate Ca2+, causes a slow release of Ca2+, which is greatly enhanced by addition of inositol trisphosphate (IP3). The Ca2+ release caused by IP3 under these conditions is very much greater than that observed in the absence of GTP. The effect of GTP is dependent on the presence of polyethylene glycol in the incubation medium and is not due to inhibition of the Ca2+-accumulation system. The response to GTP is time-dependent, particularly at low (4 microM) GTP concentrations, and cannot be mimicked by ATP, ITP, CTP, UTP and GDP. Studies with [gamma-32P]GTP show that, during incubation with microsomal fractions, the terminal phosphate of GTP is transferred to two protein species, of Mr 38 000 and 17 000. These protein phosphorylations are still present when an excess of unlabelled ATP is included in the incubation mixture, but appear to be unaffected by the presence or absence of IP3 and polyethylene glycol. As a working hypothesis, it is suggested that a protein, phosphorylated by GTP, has to bind to the microsomal membranes before IP3 can stimulate Ca2+ release, and that, in vitro, the binding of this protein is favoured by the presence of polyethylene glycol.

UI MeSH Term Description Entries
D007295 Inositol Phosphates Phosphoric acid esters of inositol. They include mono- and polyphosphoric acid esters, with the exception of inositol hexaphosphate which is PHYTIC ACID. Inositol Phosphate,Phosphate, Inositol,Phosphates, Inositol
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011092 Polyethylene Glycols Polymers of ETHYLENE OXIDE and water, and their ethers. They vary in consistency from liquid to solid depending on the molecular weight indicated by a number following the name. They are used as SURFACTANTS, dispersing agents, solvents, ointment and suppository bases, vehicles, and tablet excipients. Some specific groups are NONOXYNOLS, OCTOXYNOLS, and POLOXAMERS. Macrogols,Polyoxyethylenes,Carbowax,Macrogol,Polyethylene Glycol,Polyethylene Oxide,Polyethyleneoxide,Polyglycol,Glycol, Polyethylene,Glycols, Polyethylene,Oxide, Polyethylene,Oxides, Polyethylene,Polyethylene Oxides,Polyethyleneoxides,Polyglycols,Polyoxyethylene
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013403 Sugar Phosphates Phosphates, Sugar

Related Publications

A P Dawson, and J G Comerford, and D V Fulton
May 1984, Biochemical and biophysical research communications,
A P Dawson, and J G Comerford, and D V Fulton
June 1985, FEBS letters,
A P Dawson, and J G Comerford, and D V Fulton
November 1987, Biochimica et biophysica acta,
A P Dawson, and J G Comerford, and D V Fulton
January 1992, Advances in second messenger and phosphoprotein research,
A P Dawson, and J G Comerford, and D V Fulton
February 1990, The Biochemical journal,
A P Dawson, and J G Comerford, and D V Fulton
April 1992, Biochemical and biophysical research communications,
Copied contents to your clipboard!