Interaction between gene II protein and the DNA replication origin of bacteriophage f1. 1986

K Horiuchi

The origin of DNA replication of the filamentous bacteriophage f1 binds its initiator protein (gene II protein) in vitro to form a complex that can be trapped on nitrocellulose filters. The binding occurs with both superhelical form DNA and linear DNA fragments. A number of defective mutants of the origin were tested for the ability to bind gene II protein. The region of DNA required for the binding is around a second palindrome downstream from the palindrome that contains the DNA replication initiation site. It overlaps, but is not identical to, the region required for the nicking reaction by the protein. The nicking site itself was dispensable for the binding. In vivo, a number of defective deletion mutants of the origin, when in a plasmid, inhibited growth of superinfecting phage if the intracellular level of gene II protein was low. In addition, these defective origins inhibited the activity of the functional phage origin located on the same replicon. The domain of the DNA sequence required for inhibition in vivo was consistent with that for the binding in vitro.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D012093 Replicon Any DNA sequence capable of independent replication or a molecule that possesses a REPLICATION ORIGIN and which is therefore potentially capable of being replicated in a suitable cell. (Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Replication Unit,Replication Units,Replicons,Unit, Replication,Units, Replication
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004278 DNA, Superhelical Circular duplex DNA isolated from viruses, bacteria and mitochondria in supercoiled or supertwisted form. This superhelical DNA is endowed with free energy. During transcription, the magnitude of RNA initiation is proportional to the DNA superhelicity. DNA, Supercoiled,DNA, Supertwisted,Supercoiled DNA,Superhelical DNA,Supertwisted DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D001435 Bacteriophages Viruses whose hosts are bacterial cells. Phages,Bacteriophage,Phage
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D014764 Viral Proteins Proteins found in any species of virus. Gene Products, Viral,Viral Gene Products,Viral Gene Proteins,Viral Protein,Protein, Viral,Proteins, Viral
Copied contents to your clipboard!