Accurate reinnervation of motor end plates after disruption of sheath cells and muscle fibers. 1986

D P Kuffler

After injury, regenerating motor axons grow back to form neuromuscular junctions at the original synaptic sites on muscle fibers. The pathways they grow along consist of basement membrane, Schwann cells, and perineurium that remained after degeneration of the original axons. All the factors necessary for directing axons to the original synaptic sites persist in muscles even after disruption of myofibers. The aim of the present experiments was to determine whether structural integrity of nerve sheath cells is required for precise reinnervation in the presence and absence of muscle fiber targets. The region of innervation of the cutaneous pectoris muscle of the frog was briefly frozen to eliminate all living cells from neuromuscular junctions, intramuscular nerve bundles, and from a 1-3-mm length of the nerve trunk. Only extracellular matrices persisted within the frozen region of muscle and nerve. These consisted of the basement membrane sheaths of myofibers, of Schwann cells, and of perineurial cells and the small fragments of disrupted cells that were bound to them. In some preparations new muscle fibers developed within the basement membrane sheaths. Regenerating axons grew through the naked basement membrane sheaths of original Schwann cells, formed numerous branches, and contacted the myofibers precisely at the original synaptic sites. By 5 weeks 75% of the original synaptic sites became reinnervated; the terminals were indistinguishable from those at normal neuromuscular junctions. In contrast, preparations in which all muscle fibers were prevented from regenerating far fewer synaptic sites became reinnervated.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D011894 Rana pipiens A highly variable species of the family Ranidae in Canada, the United States and Central America. It is the most widely used Anuran in biomedical research. Frog, Leopard,Leopard Frog,Lithobates pipiens,Frogs, Leopard,Leopard Frogs
D002802 Cholinesterases Acylcholineacylhydrolase,Cholase,Cholinesterase
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon

Related Publications

D P Kuffler
December 1981, Hiroshima journal of medical sciences,
D P Kuffler
September 1963, Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948),
D P Kuffler
December 2006, Zhongguo yi xue ke xue yuan xue bao. Acta Academiae Medicinae Sinicae,
D P Kuffler
July 1977, Proceedings of the National Academy of Sciences of the United States of America,
D P Kuffler
January 1965, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
Copied contents to your clipboard!