Intramembrane charge movement and calcium release in frog skeletal muscle. 1986

W Melzer, and M F Schneider, and B J Simon, and G Szucs

Intramembrane charge movement and myoplasmic free calcium transients (delta[Ca2+]) were monitored in voltage-clamped segments of isolated frog muscle fibres cut at both ends and mounted in a double Vaseline-gap chamber. The fibres were stretched to sarcomere lengths of 3.5-4.6 micron to minimize mechanical movement and the related optical artifacts. The over-all calcium removal capability of each fibre was characterized by analysing the decay of delta[Ca2+] following pulses of several different amplitudes and durations. The rate of sarcoplasmic reticulum (s.r.) calcium release was then calculated for each delta[Ca2+] using the calcium removal properties determined for that fibre. The calculated calcium release wave form reached a relatively early peak and then declined appreciably during a 100-150 ms depolarizing pulse. The voltage dependence of the peak rate of calcium release was steeper and was centred at more positive membrane potentials than the steady-state voltage dependence of charge movement in the same fibres. A considerable fraction of the total intramembrane charge was moved at potentials at which delta[Ca2+] and calcium release were only a few per cent of maximum. This 'subthreshold' charge may correspond to charge moved in preliminary transitions that precede a final charge transition that activates release. A 'stepped on' pulse protocol was used to experimentally separate the subthreshold charge movement from the charge movement of the final transitions that may control calcium release. The stepped on pulse consisted of a set 50 ms pre-pulse to a potential just at or below the potential for detectable delta[Ca2+] followed immediately by a test pulse of varying amplitude and duration. For a wide range of test pulse amplitudes and durations in the stepped on protocol the peak rate of calcium release was linearly related to the charge movement during the test pulse. This result points to a tight control of activation of s.r. calcium release by intramembrane charge movement. The voltage dependence of both charge movement and of the rate of calcium release could be fitted simultaneously with a three-state, two-transition sequential model in which charge moves in both transitions but only the final transition activates s.r. calcium release. A model with three identical and independent charged gating particles per channel gave an equally good fit to the data. Both models closely fit the charge movement and release data except within about 10 mV of the voltage at which release became detectable, where release varied more steeply with membrane potential than predicted by either model.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011894 Rana pipiens A highly variable species of the family Ranidae in Canada, the United States and Central America. It is the most widely used Anuran in biomedical research. Frog, Leopard,Leopard Frog,Lithobates pipiens,Frogs, Leopard,Leopard Frogs
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012519 Sarcoplasmic Reticulum A network of tubules and sacs in the cytoplasm of SKELETAL MUSCLE FIBERS that assist with muscle contraction and relaxation by releasing and storing calcium ions. Reticulum, Sarcoplasmic,Reticulums, Sarcoplasmic,Sarcoplasmic Reticulums
D012684 Sensory Thresholds The minimum amount of stimulus energy necessary to elicit a sensory response. Sensory Threshold,Threshold, Sensory,Thresholds, Sensory
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

W Melzer, and M F Schneider, and B J Simon, and G Szucs
June 1987, The Journal of physiology,
W Melzer, and M F Schneider, and B J Simon, and G Szucs
May 1979, Nature,
W Melzer, and M F Schneider, and B J Simon, and G Szucs
December 1997, The Journal of physiology,
W Melzer, and M F Schneider, and B J Simon, and G Szucs
February 1990, The Journal of physiology,
W Melzer, and M F Schneider, and B J Simon, and G Szucs
January 1992, Advances in experimental medicine and biology,
W Melzer, and M F Schneider, and B J Simon, and G Szucs
August 1985, Journal of muscle research and cell motility,
W Melzer, and M F Schneider, and B J Simon, and G Szucs
August 1983, The Journal of physiology,
W Melzer, and M F Schneider, and B J Simon, and G Szucs
February 1990, The Journal of physiology,
W Melzer, and M F Schneider, and B J Simon, and G Szucs
August 1991, The Journal of general physiology,
W Melzer, and M F Schneider, and B J Simon, and G Szucs
February 2005, Biophysical journal,
Copied contents to your clipboard!