Sprouting and nerve retraction in frog neuromuscular junction during ontogenesis and environmental changes. 1986

H Jans, and R Salzmann, and A Wernig

Based on recent evidence for a physiological remodeling of neuromuscular contacts (Wernig et al.), a morphometric study was performed on axon- and cholinesterase-stained cutaneous pectoris muscle of frog. The aim of this investigation was to separate changes due to aging, growth, and environmental conditions. Within a single muscle, fiber diameters, synaptic lengths, number of intraterminal branches, and lengths of abandoned gutters differ considerably (with coefficients of variation from 40 to 56%). On the other hand, these parameters are correlated and correlations hold when muscle fibers grow during ontogenesis: large muscle fibers bear larger and more complex junctions than small fibers. Obviously there exist growth regulating interactions between muscle fiber and the presynaptic nerve. To dissociate between age- and growth-related changes muscle fibers of equal diameters in frogs of different age are compared. With increase in age there is an additional increase in abandoned gutters, synaptic length, and complexity independent of muscle fiber growth. Possibly, abandoned gutters accumulate with time and synaptic length increases with age as the net outcome of continual synapse remodeling. When freshly caught frogs (October) were compared with frogs kept under laboratory conditions for a period of 16 weeks (which in addition included a change in season) the number of sprouts in a junction increased by about 2, the average length of presynaptic nerve terminals with small circumscribed contacts increased by 30-150 microns, and abandoned gutters tended to be shorter on fibers with large junctions. The hypothesis is discussed that remodeling is "inherent" to nerve terminals whereby sprouting is counterbalanced and reversed by nerve activity.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D011896 Rana temporaria A species of the family Ranidae occurring in a wide variety of habitats from within the Arctic Circle to South Africa, Australia, etc. European Common Frog,Frog, Common European,Common European Frog,Common Frog, European,European Frog, Common,Frog, European Common
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D004781 Environmental Exposure The exposure to potentially harmful chemical, physical, or biological agents in the environment or to environmental factors that may include ionizing radiation, pathogenic organisms, or toxic chemicals. Exposure, Environmental,Environmental Exposures,Exposures, Environmental
D006128 Growth Gradual increase in the number, the size, and the complexity of cells of an individual. Growth generally results in increase in ORGAN WEIGHT; BODY WEIGHT; and BODY HEIGHT.
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

H Jans, and R Salzmann, and A Wernig
February 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience,
H Jans, and R Salzmann, and A Wernig
July 1988, The Journal of physiology,
H Jans, and R Salzmann, and A Wernig
January 1975, Zeitschrift fur mikroskopisch-anatomische Forschung,
H Jans, and R Salzmann, and A Wernig
June 1994, The Journal of physiology,
H Jans, and R Salzmann, and A Wernig
January 1965, Fiziologicheskii zhurnal SSSR imeni I. M. Sechenova,
H Jans, and R Salzmann, and A Wernig
July 1987, Journal of neurophysiology,
H Jans, and R Salzmann, and A Wernig
March 1981, The Journal of cell biology,
Copied contents to your clipboard!