Responses of cerebellar cortex to electrical stimulation of the glossopharyngeal nerve in the frog. 1986

T Hanamori, and M Nakashima, and N Ishiko

In the frog cerebellar cortex, electrical stimulation of the glossopharyngeal (IXth) nerve induced negative field potentials with a peak latency of 57 ms whose distribution was bilateral with ipsilateral predominance. The site where the maximum negativity was induced by IXth nerve stimulation was histologically located within the molecular layer near the Purkinje cell layer. In extracellular recording, electrical stimulation of the IXth nerve induced complex and/or simple spike discharges of Purkinje cells. Such evoked potentials and unitary spikes in the cerebellum were attributed to the excitation of the IXth nerve afferents of higher threshold which are mainly composed of fibers sensitive to taste stimulation. These results suggest that gustatory information projects to the cerebellum, as well as those of other kinds of senses, such as touch, visual and auditory sensation.

UI MeSH Term Description Entries
D009431 Neural Conduction The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus. Nerve Conduction,Conduction, Nerve,Conduction, Neural,Conductions, Nerve,Conductions, Neural,Nerve Conductions,Neural Conductions
D011689 Purkinje Cells The output neurons of the cerebellar cortex. Purkinje Cell,Purkinje Neuron,Purkyne Cell,Cell, Purkinje,Cell, Purkyne,Cells, Purkinje,Cells, Purkyne,Neuron, Purkinje,Neurons, Purkinje,Purkinje Neurons,Purkyne Cells
D011892 Rana catesbeiana A species of the family Ranidae (true frogs). The only anuran properly referred to by the common name "bullfrog", it is the largest native anuran in North America. Bullfrog,Bullfrogs,Rana catesbeianas,catesbeiana, Rana
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D002525 Cerebellar Cortex The superficial GRAY MATTER of the CEREBELLUM. It consists of two main layers, the stratum moleculare and the stratum granulosum. Cortex Cerebelli,Cerebelli, Cortex,Cerebellus, Cortex,Cortex Cerebellus,Cortex, Cerebellar
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D005930 Glossopharyngeal Nerve The 9th cranial nerve. The glossopharyngeal nerve is a mixed motor and sensory nerve; it conveys somatic and autonomic efferents as well as general, special, and visceral afferents. Among the connections are motor fibers to the stylopharyngeus muscle, parasympathetic fibers to the parotid glands, general and taste afferents from the posterior third of the tongue, the nasopharynx, and the palate, and afferents from baroreceptors and CHEMORECEPTOR CELLS of the carotid sinus. Cranial Nerve IX,Ninth Cranial Nerve,Cranial Nerve IXs,Cranial Nerve, Ninth,Cranial Nerves, Ninth,Glossopharyngeal Nerves,Nerve, Glossopharyngeal,Nerve, Ninth Cranial,Nerves, Glossopharyngeal,Nerves, Ninth Cranial,Ninth Cranial Nerves
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013649 Taste The ability to detect chemicals through gustatory receptors in the mouth, including those on the TONGUE; the PALATE; the PHARYNX; and the EPIGLOTTIS. Gustation,Taste Sense,Gustations,Sense, Taste,Senses, Taste,Taste Senses,Tastes

Related Publications

T Hanamori, and M Nakashima, and N Ishiko
April 1987, Brain research bulletin,
T Hanamori, and M Nakashima, and N Ishiko
October 1976, Experimental brain research,
T Hanamori, and M Nakashima, and N Ishiko
January 1975, Fiziolohichnyi zhurnal,
T Hanamori, and M Nakashima, and N Ishiko
January 1990, Dentistry in Japan,
T Hanamori, and M Nakashima, and N Ishiko
December 1990, Brain research,
T Hanamori, and M Nakashima, and N Ishiko
May 1959, Bollettino della Societa italiana di biologia sperimentale,
T Hanamori, and M Nakashima, and N Ishiko
May 2002, Chemical senses,
T Hanamori, and M Nakashima, and N Ishiko
July 1980, Research communications in chemical pathology and pharmacology,
T Hanamori, and M Nakashima, and N Ishiko
January 1972, Fiziolohichnyi zhurnal,
Copied contents to your clipboard!