Natural cytotoxic T cells (NCTC) that differ from natural killer (NK) and natural cytotoxic (NC) cells are present in Peyer's patches of mice. 1986

S C Gautam, and K Beckman, and J R Battisto

We have examined noninduced cytotoxicity of mouse gut associated and peripheral lymphoid tissues for a wide variety of syngeneic as well as allogeneic cell lines and lymphoblasts. Lymphoid cells from Peyer's patches were found to lyse these targets in a 3-hr chromium release assay whereas lymphoid cells from intestinal mucosa, mesenteric or peripheral lymph nodes, spleen, and thymus did not. The variety of targets toward which Peyer's patch cells were cytotoxic established the latter as nonspecific and H-2 unrestricted. The cell responsible for the lytic event was identified as possessing Thy 1.2 and Ia surface antigens. This naturally cytotoxic T cell (NCTC) was found to be adherent to nylon-wool but not to plastic plates. Although both natural killer cell (NK) and non-NK targets served as targets for the NCTC, the latter were further differentiable from NK cells by lack of asialo GM1 surface marker, which is present on NK cells. In addition, NCTC remained fully functional in mice given either of the drugs cyclophosphamide or cortisone. Each of these drugs, in the doses used, markedly reduced poly(I:C)-induced NK activity. Thus, NCTC differs from NK on the basis of the spectrum of targets against which it is functional, phenotypic surface markers, insusceptibility to stimulation with poly(I:C), and insensitivity to diminution by the immunosuppressive drugs cyclophosphamide and hydrocortisone. Since NCTC is a Thy 1.2 antigen-bearing cell and is detectable in a 3-hr cytotoxic assay, it also differs from the natural cytotoxic (NC) cell. NC lacks the Thy 1.2 marker and becomes detectable only in an 18-hr cytotoxic assay. Thus, NCTC is neither an NK nor an NC cell. We have discussed the possibility that the three naturally occurring cells may be related by being dedifferentiated descendants of an antigen-specific cytotoxic T lymphocyte (CTL). Alternatively, since NCTC is confined to an anatomical site prone to ample antigenic exposure and is still identifiable as a T cell, it may be in linear transition from the CTL to the NK or NC stages.

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D007694 Killer Cells, Natural Bone marrow-derived lymphocytes that possess cytotoxic properties, classically directed against transformed and virus-infected cells. Unlike T CELLS; and B CELLS; NK CELLS are not antigen specific. The cytotoxicity of natural killer cells is determined by the collective signaling of an array of inhibitory and stimulatory CELL SURFACE RECEPTORS. A subset of T-LYMPHOCYTES referred to as NATURAL KILLER T CELLS shares some of the properties of this cell type. NK Cells,Natural Killer Cells,Cell, NK,Cell, Natural Killer,Cells, NK,Cells, Natural Killer,Killer Cell, Natural,NK Cell,Natural Killer Cell
D008198 Lymph Nodes They are oval or bean shaped bodies (1 - 30 mm in diameter) located along the lymphatic system. Lymph Node,Node, Lymph,Nodes, Lymph
D008643 Mesentery A layer of the peritoneum which attaches the abdominal viscera to the ABDOMINAL WALL and conveys their blood vessels and nerves. Mesenteries
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D010581 Peyer's Patches Lymphoid tissue on the mucosa of the small intestine. Patches, Peyer's,Peyer Patches,Peyers Patches
D003602 Cytotoxicity, Immunologic The phenomenon of target cell destruction by immunologically active effector cells. It may be brought about directly by sensitized T-lymphocytes or by lymphoid or myeloid "killer" cells, or it may be mediated by cytotoxic antibody, cytotoxic factor released by lymphoid cells, or complement. Tumoricidal Activity, Immunologic,Immunologic Cytotoxicity,Immunologic Tumoricidal Activities,Immunologic Tumoricidal Activity,Tumoricidal Activities, Immunologic
D005260 Female Females
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S C Gautam, and K Beckman, and J R Battisto
October 1982, International journal of cancer,
S C Gautam, and K Beckman, and J R Battisto
June 1985, Journal of immunology (Baltimore, Md. : 1950),
S C Gautam, and K Beckman, and J R Battisto
December 1980, Experientia,
S C Gautam, and K Beckman, and J R Battisto
October 1985, The American journal of pathology,
S C Gautam, and K Beckman, and J R Battisto
January 1996, Veterinary immunology and immunopathology,
S C Gautam, and K Beckman, and J R Battisto
September 2006, American journal of reproductive immunology (New York, N.Y. : 1989),
S C Gautam, and K Beckman, and J R Battisto
May 1996, Clinical and experimental immunology,
Copied contents to your clipboard!