Firing rate trajectories of human motor units during activity-dependent muscle potentiation. 2022

Alexander M Zero, and Eric A Kirk, and Charles L Rice
Faculty of Health Sciences, School of Kinesiology, The University of Western Ontario, London, Ontario, Canada.

During activity-dependent potentiation (ADP), motor unit firing rates (MUFRs) are lower; however, the mechanism for this response is not known. During increasing torque isometric contractions at low contraction intensities, MUFR trajectories initially accelerate and saturate demonstrating a nonlinear response due to the activation of persistent inward currents (PICs) at the motoneuron. The purpose was to assess whether PICs are a factor in the reduction of MUFRs during ADP. To assess this, MUFR trajectories were fit with competing functions of linear regression and a rising exponential (i.e., acceleration and saturation). With fine-wire electrodes, discrete MU potential trains were recorded in the tibialis anterior during slowly increasing dorsiflexion contractions to 10% of maximal voluntary contraction following both voluntary [postactivation potentiation (PAP)] and evoked [posttetanic potentiation (PTP)] contractions. In eight participants, 25 MUs were recorded across both ADP conditions and compared with the control with no ADP effect. During PAP and PTP, the average MUFRs were 16.4% and 9.2% lower (both P ≤ 0.001), respectively. More MUFR trajectories were better fit to the rising exponential during control (16/25) compared with PAP (4/25, P < 0.001) and PTP (8/25, P = 0.03). The MU samples that had a rising exponential MUFR trajectory during PAP and PTP displayed an ∼11% lower initial acceleration compared with control (P < 0.05). Thus, presumed synaptic amplification and MUFR saturation due to PIC properties are attenuated during ADP regardless of the type of conditioning contraction. This response may contribute to lower MUFRs and likely occurred because synaptic input is reduced when contractile function is enhanced.NEW & NOTEWORTHY During activity-dependent muscle potentiation (ADP), initial motor unit firing rate (MUFR) acceleration and the occurrence of MUFR trajectory saturation as a function of increasing contraction intensity were assessed. With no ADP (control), trajectories were more likely to accelerate and saturate (16/25 units) compared with voluntary- and stimulated-induced ADP conditions (4/25 and 8/25 units, respectively) that were fit better linearly. Therefore, during ADP, an attenuated intrinsic response to voluntary synaptic inputs occurs.

UI MeSH Term Description Entries
D007537 Isometric Contraction Muscular contractions characterized by increase in tension without change in length. Contraction, Isometric,Contractions, Isometric,Isometric Contractions
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D004576 Electromyography Recording of the changes in electric potential of muscle by means of surface or needle electrodes. Electromyogram,Surface Electromyography,Electromyograms,Electromyographies,Electromyographies, Surface,Electromyography, Surface,Surface Electromyographies
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D018482 Muscle, Skeletal A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles. Anterior Tibial Muscle,Gastrocnemius Muscle,Muscle, Voluntary,Plantaris Muscle,Skeletal Muscle,Soleus Muscle,Muscle, Anterior Tibial,Muscle, Gastrocnemius,Muscle, Plantaris,Muscle, Soleus,Muscles, Skeletal,Muscles, Voluntary,Skeletal Muscles,Tibial Muscle, Anterior,Voluntary Muscle,Voluntary Muscles
D019415 Torque The rotational force about an axis that is equal to the product of a force times the distance from the axis where the force is applied. Torques

Related Publications

Alexander M Zero, and Eric A Kirk, and Charles L Rice
February 2004, Experimental brain research,
Alexander M Zero, and Eric A Kirk, and Charles L Rice
January 1992, The International journal of neuroscience,
Alexander M Zero, and Eric A Kirk, and Charles L Rice
April 1973, The Journal of physiology,
Alexander M Zero, and Eric A Kirk, and Charles L Rice
October 1996, Experimental brain research,
Alexander M Zero, and Eric A Kirk, and Charles L Rice
December 1978, Neurology,
Alexander M Zero, and Eric A Kirk, and Charles L Rice
January 1984, The Journal of physiology,
Alexander M Zero, and Eric A Kirk, and Charles L Rice
July 2005, Journal of applied physiology (Bethesda, Md. : 1985),
Alexander M Zero, and Eric A Kirk, and Charles L Rice
January 1977, Acta oto-laryngologica,
Alexander M Zero, and Eric A Kirk, and Charles L Rice
August 1979, Brain research,
Alexander M Zero, and Eric A Kirk, and Charles L Rice
February 2001, The Journal of physiology,
Copied contents to your clipboard!